

ASX Announcement

SHARE

19 September 2011

INFORMATION

Issued Shares: 450.7M

MINERALISED ZONES EXTENDED
AT TEBERU PIT

Unlisted

Options: 0.6M

Unlisted Performance Share Rights: 2.6M

MINERAL RESOURCES

Measured: 1.20Mozs 20.3Mt 1.84g/t

Indicated: 0.55Mozs 9.90Mt 1.73g/t

Inferred: 0.36Mozs 6.98Mt 1.62g/t

ORE RESERVES

Proven: 854,000ozs 13.52Mt 1.96g/t

Probable: 214,000ozs 3.02Mt 2.21g/t

MARKET CAPITALISATION A\$345M

Highlights

- High grade zones intersected under Teberu open pits
- Mineralisation up to 40m wide
- Multiple mineralised zones intersected

Adamus Resources (ASX:ADU) is pleased to report that drilling carried out at its Nzema Gold Project in Ghana has uncovered high grade gold deposits under the mine's existing open pits. Best results include:

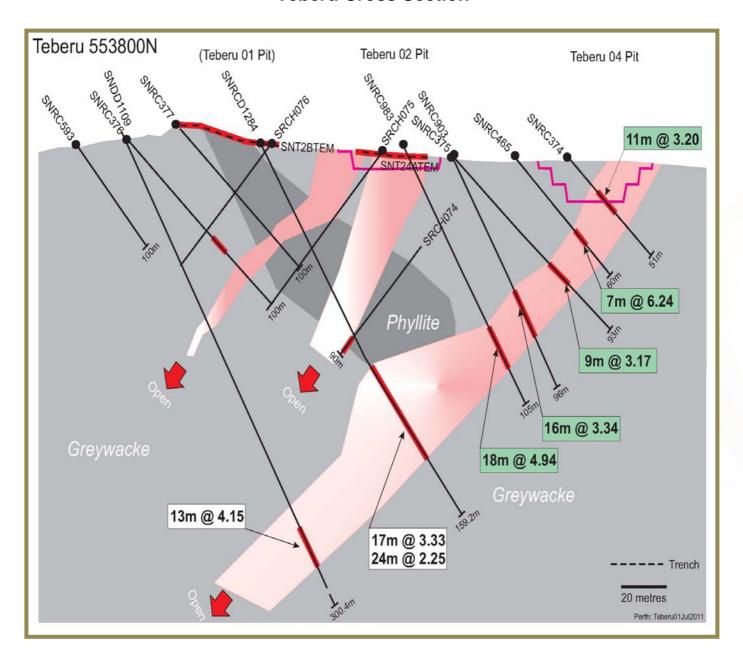
SNRCD1284	17m @ 3.33g/t Au from 90m 24m @ 2.25g/t Au from 110m
SNRCD1283	5m @ 17.64g/t Au from 134m
SNDD1303	19m @ 2.66g/t Au from 157m
SNRCD1061	6m @ 3.17g/t Au from 60m 5m @ 10.51g/t Au from 69m
SNDD1109	13m @ 4.15g/t Au from 167m

^{*} Further details on the exploration results are provided in Appendix 1

The drilling was carried out along the Salman Trend, which is located at the southern end of the world class Ashanti Gold Belt and hosts significant oxide gold deposits at South, Central and North Salman, Teberu and Akango. Although the whole 9km strike extent of the Salman Trend is mineralised, the mineralisation commonly forms distinct shoots.

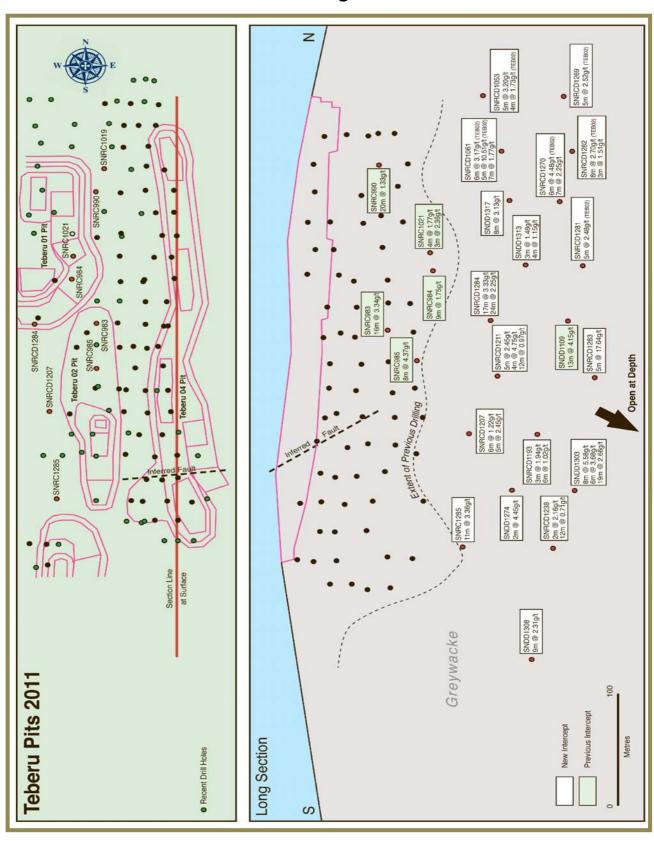
Reverse circulation (RC) and diamond drilling during the first half of 2011 has targeted shoots under the Teberu 01, 02 and 04 oxide pits. Drilling was designed on an approximate 50m by 50m grid to test the shoots to a vertical depth of 100m. The mineralised zones dip moderately to the west and vary in width and grade along strike and down dip. In SNRCD1284 the mineralised zone is 40m wide at an average grade of ~2.6g/t Au while in SNRCD1283 the mineralised zone is only 5m wide but with a higher grade of 17.64g/t Au.

Drilling completed in the first half of 2011 was sufficient to categorise a portion of the shoots into the Inferred Mineral Resource category. This will be reflected in the mineral resource update planned for later in the year. Additional drilling will be conducted on a 50m by 25m grid to convert the mineral resource from Inferred to Measured and Indicated. Potential also exists for extending the mineral resource with SNDD1308 intersecting 9m @ 2.31g/t Au at the southern end of Teberu 04 and the intersection of 5m @ 17.64g/t Au in SNRCD1283 open at depth.


Mark Connelly, Adamus' Managing Director, commented: "Our recent drilling program confirms the growth opportunity at Nzema for additional oxide mineralization and the sulphide project in particular."

Stock Exchange Codes

ASX: ADU TSXV: ADU FSE: AXM Level 2, 45 Richardson Street West Perth WA 6005 PO Box 568 West Perth WA 6872



Teberu Cross Section

Teberu Long Section

Level 2, 45 Richardson Street West Perth WA 6005 PO Box 568 West Perth WA 6872

About Adamus

Adamus Resources is a gold producer, with its key asset located in Ghana, West Africa. The company poured its first gold in January 2011, entered commercial production three months later and is on target is to produce 100,000 ounces of gold annually from its flagship Nzema Gold Project. The project includes open pit mining operations, a processing facility and associated infrastructure to mine and process ore. On current estimates the project has a minimum life of 10 years.

As well as continuing with an extensive exploration program aimed at expanding its operations in Ghana, Adamus is also targeting additional discoveries from its significant landholding in Liberia. Both countries provide a stable, mining-friendly political and economic environment for Adamus to operate.

Adamus is headquartered in Perth, Western Australia. The company is listed on the Australian Securities Exchange, TSX Venture Exchange and Frankfurt Stock Exchange Open Market.

In August 2011 the Company announced its intention to merge with Endeavour Mining Corporation. Endeavour owns the Youga Gold Mine in Burkina Faso, West Africa as well as a pipeline of exploration and development projects in the region. If approved by Adamus and Endeavour shareholders, the merger is likely to take place in December 2011.

For further information contact:

Mark Connelly – Managing Director / CEO +61 8 9322 5943 email: info@adamusresources.com.au

For media enquiries contact:

David Ikin – Professional Public Relations +61 8 9388 0944

email: david.ikin@ppr.com.au

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Information in this report pertaining to exploration results was compiled by Martin Bennett, an employee of Adamus Resources Limited, who is a Member of the Australasian Institute of Geoscientists and has more than 5 years experience in estimation of recoverable resources in gold deposits. He qualifies as a "Qualified Person" under Canadian National Instrument 43-101 – Standards of Disclosure for Mineral Projects. Martin Bennett has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a "Competent Person" as defined in the JORC Code. Martin Bennett consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Information in this announcement pertaining to ore reserves was compiled by Glenn Williamson an employee of Mining Resources Pty Ltd, who is a Member of The Australasian Institute of Mining and Metallurgy. He qualifies as a "Qualified Person" under Canadian National Instrument 43-101 – Standards of Disclosure for Mineral Projects. Glenn Williamson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a "Competent Person" as defined in the JORC Code. Glenn Williamson consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Information in this announcement pertaining to mineral resources was compiled by Nic Johnson, an employee of Hellman & Schofield Pty Ltd, who is a Member of The Australian Institute of Geoscientists and has more than 5 years experience in estimation of recoverable resources in gold deposits. He qualifies as a "Qualified Person" under Canadian National Instrument 43-101 – Standards of Disclosure for Mineral Projects. Nic Johnson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a "Competent Person" as defined in the JORC Code. Nic Johnson consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Caution Regarding Forward Looking Information.

Certain statements included in this announcement, including information regarding Adamus' plans with respect to its mineral properties, constitute forward-looking information. Forward-looking information includes, among other things, statements regarding expected operations. Forward-looking information is based upon a number of estimates and assumptions made by the Company in light of its experience, current conditions and expectations of future developments, as well as other factors that the Company believes are appropriate in the circumstances. While these estimates and assumptions are considered reasonable by the Company, they are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Investors are cautioned that forward-looking information is no guarantee of future performance and, accordingly, investors are cautioned not to put undue reliance on forward-looking information due to the inherent uncertainty therein. Forward-looking information is made as at the date of this announcement and the Company disclaims any intent or obligation to update publicly such forward-looking information, whether as a result of new information, future events or results or otherwise.

Appendix 1 - Drilling Results

HOLE ID	From (m)	To (m)	Au g/t
SNDD1109	167	168	0.58
SNDD1109	168	169	0.44
SNDD1109	169	170	1.13
SNDD1109	170	171	0.77
SNDD1109	171	172	0.70
SNDD1109	172	173	0.31
SNDD1109	173	173	7.91
SNDD1109	174	175	9.30
SNDD1109 SNDD1109	175	176	5.89
SNDD1109	176	177	6.02
SNDD1109 SNDD1109	177	177	11.32
SNDD1109 SNDD1109	178	178	8.82
SNDD1109	179	180	0.77
SNDD1274	135	136	2.00
SNDD1274	136	137	6.89
SNDD1303	75	76	1.07
SNDD1303	76	77	1.18
SNDD1303	77	78	0.72
SNDD1303	78	79	6.04
SNDD1303	79	80	6.46
SNDD1303	80	81	12.22
SNDD1303	81	82	13.51
SNDD1303	82	83	3.44
SNDD1303	123	124	0.86
SNDD1303	124	125	5.46
SNDD1303	125	126	3.78
SNDD1303	126	127	4.78
SNDD1303	127	128	6.22
SNDD1303	128	129	0.98
SNDD1303	157	158	1.64
SNDD1303	158	159	0.16
SNDD1303	159	160	0.87
SNDD1303	160	161	0.53
SNDD1303	161	162	0.20
SNDD1303	162	163	1.67
SNDD1303	163	164	5.13
SNDD1303	164	165	4.47
SNDD1303	165	166	7.69
SNDD1303	166	167	6.46
SNDD1303	167	168	2.73
SNDD1303	168	169	2.51
SNDD1303	169	170	1.18
SNDD1303	170	171	0.25
SNDD1303	171	172	2.31
SNDD1303	172	173	6.91
SNDD1303	173	174	4.38
SNDD1303	174	175	0.48
SNDD1303	175	176	1.04
SNDD1308	146	147	0.66
SNDD1308	147	148	3.09
SNDD1308	148	149	6.12
SNDD1308	149	150	1.66
211001200	143	130	1.00

HOLE ID	From (m)	To (m)	Au a/t
SNDD1308	150	151	Au g/t 2.51
SNDD1308	151	152	1.66
SNDD1308	152	153	3.06
SNDD1308 SNDD1308	153	154	0.83
SNDD1308	154	155	1.23
SNDD1313	161	162	3.27
SNDD1313	162	163	0.58
SNDD1313	163	164	0.60
SNDD1313	178	180	0.90
SNDD1313	180	182	1.40
SNDD1317	110	111	0.96
SNDD1317	111	112	1.82
SNDD1317	112	113	1.29
SNDD1317	113	114	4.46
SNDD1317	114	115	3.65
SNDD1317	115	116	3.64
SNDD1317	116	117	7.75
SNDD1317	117	118	1.49
SNRC1285	86	87	2.93
SNRC1285	87	88	2.42
SNRC1285	88	89	3.44
SNRC1285	89	90	5.79
SNRC1285	90	91	2.02
SNRC1285	91	92	1.23
SNRC1285	92	93	1.05
SNRC1285	93	94	2.16
SNRC1285	94	95	2.15
SNRC1285	95	96	4.24
SNRC1285	96	97	9.48
SNRCD1053	50	51	2.97
SNRCD1053	51	52	0.40
SNRCD1053	52	53	1.89
SNRCD1053	53	54	1.66
SNRCD1053	54	55	0.12
SNRCD1053	55	56	0.12
SNRCD1053	56	57	0.00
SNRCD1053	57	58	0.07
	58	59	0.07
SNRCD1053			
SNRCD1053	59	60	0.02
SNRCD1053	60	61	0.09
SNRCD1053	61	62	0.005
SNRCD1053	62	63	0.02
SNRCD1053	63	64	0.03
SNRCD1053	64	65	0.01
SNRCD1053	65	66	0.01
SNRCD1053	66	67	0.005
SNRCD1053	67	68	0.02
SNRCD1053	68	69	0.01
SNRCD1053	69	70	0.03
SNRCD1053	70	71	0.005
SNRCD1053	71	72	0.06
SNRCD1053	72	73	0.02

HOLE ID	From (m)	To (m)	Au g/t
SNRCD1053	73	74	0.02
SNRCD1053	74	75	0.12
SNRCD1053	75	76	6.30
SNRCD1053	76	77	1.49
SNRCD1053	77	78	0.32
SNRCD1053	78	79	5.31
SNRCD1053	79	80	2.6
SNRCD1061	60	61	0.55
SNRCD1061	61	62	0.29
SNRCD1061	62	63	7.66
SNRCD1061	63	64	0.17
SNRCD1061	64	65	7.09
SNRCD1061	65	66	3.28
		70	6.23
SNRCD1061	69		
SNRCD1061	70	71	12.55
SNRCD1061	71	72	27.88
SNRCD1061	72	73	3.60
SNRCD1061	73	74	2.29
SNRCD1061	127	128	2.64
SNRCD1061	128	129	3.34
SNRCD1061	129	130	3.61
SNRCD1061	130	131	0.47
SNRCD1061	131	132	1.15
SNRCD1061	132	133	0.44
SNRCD1061	133	134	0.74
SNRCD1061	134	135	0.21
SNRCD1061	135	136	0.07
SNRCD1061	136	137	0.66
SNRCD1061	137	138	0.78
SNRCD1193	170	171	0.67
SNRCD1193	171	172	2.80
SNRCD1193	172	173	2.34
SNRCD1193	176	177	0.54
SNRCD1193	177	178	1.69
SNRCD1193	178	179	2.85
SNRCD1193	179	180	0.26
SNRCD1193	180	181	0.23
SNRCD1193	181	182	0.56
SNRCD1207	31	32	3.85
SNRCD1207	32	33	0.08
SNRCD1207	33	34	2.44
SNRCD1207	34	35	0.04
SNRCD1207	35	36	0.21
SNRCD1207	36	37	0.69
SNRCD1207	114	115	3.20
SNRCD1207	115	116	3.90
SNRCD1207	116	117	2.50
SNRCD1207	117	118	0.82
SNRCD1207	118	119	1.83
SNRCD1207	105	106	1.57
SNRCD1211	106	107	1.63
SNRCD1211	107	107	0.15
2IAI/CD1711	107	100	0.13

HOLE ID	From (m)	To (m)	Au g/t
SNRCD1211	108	109	4.25
SNRCD1211	109	110	4.67
SNRCD1211	120	121	2.76
SNRCD1211	121	122	11.29
SNRCD1211	122	123	4.05
SNRCD1211	123	124	0.89
SNRCD1211	130	131	2.50
SNRCD1211	131	132	0.27
SNRCD1211	132	133	0.11
SNRCD1211	133	134	0.55
SNRCD1211	134	135	0.16
SNRCD1211	135	136	0.58
SNRCD1211	136	137	1.03
SNRCD1211	137	138	0.28
SNRCD1211	138	139	0.51
SNRCD1211	139	140	0.33
SNRCD1211	140	141	4.44
SNRCD1211	141	142	0.84
SNRCD1238	157	158	0.70
SNRCD1238	158	159	0.07
SNRCD1238	159	160	0.02
SNRCD1238	160	161	1.53
SNRCD1238	161	162	0.57
SNRCD1238	162	163	1.99
SNRCD1238	163	164	0.79
SNRCD1238	164	165	0.22
SNRCD1238	165	166	0.42
SNRCD1238	166	167	0.71
SNRCD1238	167	168	0.01
SNRCD1238	168	169	1.52
SNRCD1238	171	172	3.52
SNRCD1238	172	173	0.80
SNRCD1269	127	128	0.85
SNRCD1269	127	128	0.85
SNRCD1269	128	129	3.57
SNRCD1269	128	129	3.57
SNRCD1269	129	130	2.76
SNRCD1269	129	130	2.76
SNRCD1269	130	131	2.10
SNRCD1269	130	131	2.10
SNRCD1269	131	132	3.33
SNRCD1269	131	132	3.33
SNRCD1270	109	110	0.54
SNRCD1270	110	111	2.70
SNRCD1270	111	112	4.86
SNRCD1270	112	113	5.10
SNRCD1270	113	114	9.20
SNRCD1270	114	115	4.50
SNRCD1270	182	183	1.81
SNRCD1270	183	184	4.58
SNRCD1270	184	185	0.12
SNRCD1270	185	186	0.17
SITILODIZIO	103	100	0.17

HOLE ID	From (m)	To (m)	Au g/t	HOLE ID	From (m)	To (m)	Au g/t
SNRCD1270	186	187	1.14	SNRCD1284	100	101	1.58
SNRCD1270	187	188	7.43	SNRCD1284	101	102	6.46
SNRCD1270	188	189	0.51	SNRCD1284	102	103	12.3
SNRCD1281	108	110	1.40	SNRCD1284	103	104	8.46
SNRCD1281	110	111	4.95	SNRCD1284	104	105	2.85
SNRCD1281	111	112	1.68	SNRCD1284	105	106	5.16
SNRCD1281	112	113	2.98	SNRCD1284	106	107	1.46
SNRCD1282	89	90	1.34	SNRCD1284	110	111	1.81
SNRCD1282	90	91	10.01	SNRCD1284	111	112	0.86
SNRCD1282	91	92	4.99	SNRCD1284	112	113	13.25
SNRCD1282	92	93	1.69	SNRCD1284	113	114	1.65
SNRCD1282	93	94	0.22	SNRCD1284	114	115	0.73
SNRCD1282	94	95	0.15	SNRCD1284	115	116	1.12
SNRCD1282	95	96	1.45	SNRCD1284	116	117	0.24
SNRCD1282	173	174	1.05	SNRCD1284	117	118	1.62
SNRCD1282	174	175	1.71	SNRCD1284	118	119	0.26
SNRCD1282	175	176	1.78	SNRCD1284	119	120	0.15
SNRCD1283	134	135	4.42	SNRCD1284	120	121	0.82
SNRCD1283	135	136	75.00	SNRCD1284	121	122	0.29
SNRCD1283	136	137	2.63	SNRCD1284	122	123	4.40
SNRCD1283	137	138	5.52	SNRCD1284	123	124	2.58
SNRCD1283	138	139	0.61	SNRCD1284	124	125	1.21
SNRCD1284	90	91	0.61	SNRCD1284	125	126	1.13
SNRCD1284	91	92	1.07	SNRCD1284	126	127	4.85
SNRCD1284	92	93	1.03	SNRCD1284	127	128	1.57
SNRCD1284	93	94	1.54	SNRCD1284	128	129	0.55
SNRCD1284	94	95	1.48	SNRCD1284	129	130	0.73
SNRCD1284	95	96	2.60	SNRCD1284	130	131	4.82
SNRCD1284	96	97	5.24	SNRCD1284	131	132	5.55
SNRCD1284	97	98	2.61	SNRCD1284	132	133	2.81
SNRCD1284	98	99	1.51	SNRCD1284	133	134	1.05
SNRCD1284	99	100	0.58		1		/

Notes to Exploration Results

- (i) Assaying conducted by Intertek Laboratories, Tarkwa, Ghana using industry standard 50g lead collection fire assays with AAS finish
- (ii) Reference standards, field duplicates and blank samples are routinely inserted at 1:20 and assays of quality control samples are routinely monitored.
- (iii) Assays are reported within the limits of 0.01g/t analytical precision.

ABN 80 094 543 389