

Solid base metal intercepts at shallow depths at Babinda

KEY POINTS

- 6 of 7 shallow RC holes now assayed
- Babinda Elaine VMS Deposit located on the Coonara Fault, parallel to the Rookery Fault (hosts the Cobar mineral field)
- Positive Drilling results sit in
 - ✓ the centre of a large magnetic anomaly
 - ✓ a regional PB Zn soil geochemical anomaly
 - ✓ the recently derived Babinda Elaine gravity anomaly
- Located between YTC's Hera deposit and Polymetals' Mount Boppy Mine
- 5 holes anomalous in Cu, Zn, Pb and Ag for the length of hole (100m)
- Strike length of 750m
- Lord Dudley Gravity high yet to be drilled
- A program to further drill Babinda Elaine and Lord Dudley will be looked at immediately
- Further Ground Gravity will be undertaken to extend the gravity anomaly to the north

HIGHLIGHTS INCLUDE:

BRC008 (note drilled in centre of Gravity High)

- 32m @ .22% Cu and .05% Zn from 8m to 40m Including:
 - 11m @ .35% Cu from 17m to 28m
 - o 4m @ .59% Cu, 1.4g/t Ag from 24m to 28m
 - o 7m @ .10% Cu, .13% Zn, .44g/t Ag from 12m to 19m

Plus:

- o 6m @ .53% Zn, .19% Pb, .91g/t Ag from 70m to 76m
- Including:
 - o 1m @.95 % Zn, .49% Pb, 2.2g/t Ag, .12g/t Au from 70m to 71m

Hole ended in anomalous Zn .08% from 97m to 100m and average for the 100m .08% Cu, .07% Zn per m

BRC009

• 54m @ .055% Cu, .04% Zn from 40m to 94m

Including:

- o 8m @ .13% Cu from 60m to 68m
- o 2m @ .36%, Cu .22% Zn, 1.15g/t Ag from 83m to 85m

Hole ended in anomalous mineralisation of Zn of .02% and average for the 100m .03% Cu, .07% Zn per m

BRC006

• 2m @.56% Pb, .13% Zn, 2.35 g/t Ag from 37m to 39m

Hole ended in .08% Zn, .05%Pb, 0.5 g/t from 99m to 100m and average for the 100m .02% Cu, .03% Zn per m

BRC007

- 2m @.15% Zn, .19% Pb, 0.8 g/t Ag from 26m to 28m
- 6m @.12% Zn, .06% Pb from 47m to 63m
- 2m @.11% Zn, .09%Cu, 0.6g/t Ag from 59m to 61
 Hole average for the 97m .05% Zn, .02% Pb, .01% Cu per m

BRC005

• 1m @ .14% Zn, .6 g/t Ag from 63m to 64m

Hole average for the 100m .02% Zn, .01% Pb per m

<u>BRC010</u>

Hole average for the 100m .01% Zn

Sydney, 5 October 2011: Polymetallic exploration company Ark Mines Limited **(ASX: AHK)** is pleased to report that recent drilling at its 100%-owned Babinda Project has returned promising base metal intercepts at shallow depths. The Babinda project is 20 kilometres from Nymagee and South of the Cobar Mining field, where AHK has reported encouraging drill results for gold mineralisation at its other tenements.

The 600m RC program at Babinda was designed to test the gravity high that AHK surveyed in June. The Gravity anomaly lies directly in the centre of a large oval-shaped magnetic anomaly.

AHK has received assay results for 6 of the 7 drill holes from this RC drilling program, and results at shallow depths have been encouraging.

Ark's Managing Director Roger Jackson said: "These first pass results are a pleasing addition to our exploration work at Babinda, and indicate that there is potential for higher grade results at depth, and importantly, additional targets near the Lord Dudley Mine. We are currently reviewing the next phase of RC drilling at the project which will likely be followed by a diamond drilling program to target the deeper zones.

"Whilst we are still in the early stages of exploration at Babinda, these results confirm that the gravity anomaly correlates with the drill results. We have undertaken systematic advances in our exploration of Babinda and we now have a strong mandate now to formulate and execute a significant expanded drill program."

Figure 1 Babinda Magnetic Anomaly

Table 1 – Babinda Elaine RC Drill Hole locations

Hole No	Easting	Northing	Depth to	Dip
	MGA94z55	MGA94z55	EOH m	
BRC005	449210	6465300	100	Vertical
BRC006	449250	6465300	100	Vertical
BRC007	449300	6465300	97	Vertical
BRC008	449350	6465300	100	Vertical
BRC009	449400	6465259	100	Vertical
BRC010	449410	6465300	100	Vertical

Table 2 – Babinda Elaine Drill hole Results

Hole-No	From-m	To-m	Ag-ppm	Cu-ppm	Pb-ppm	Zn-ppm	Au-ppm
BRC005	63	64	0.6	63	392	1380	0.006

Hole-No	From-m	To-m	Ag-ppm	Cu-ppm	Pb-ppm	Zn-ppm	Au-ppm
BRC006	37	38	3	542	7430	773	0.009
BRC006	38	39	1.7	297	3780	1800	0.027
BRC006	99	100	0.5	60	530	823	-100

Hole-No	From-m	To-m	Ag-ppm	Cu-ppm	Pb-ppm	Zn-ppm	Au-ppm
BRC007	26	27	1.3	306	2940	1270	0.004
BRC007	27	28	0.3	70	884	1760	0.002
BRC007	47	48	0.4	88	712	1860	0.01
BRC007	48	49	0.4	69	901	1420	0.002
BRC007	49	50	0.3	38	838	926	0.015
BRC007	50	51	-100	29	289	613	0.006
BRC007	51	52	-100	26	180	657	-100
BRC007	52	53	0.4	155	866	1580	0.008
BRC007	53	54	-100	15	66	337	0.004
BRC007	54	55	-100	20	141	308	-100
BRC007	55	56	-100	120	81	354	0.009
BRC007	56	57	-100	151	15	181	0.008
BRC007	57	58	0.2	125	40	212	0.009
BRC007	58	59	-100	106	23	255	0.007
BRC007	59	60	0.4	103	693	1820	0.009
BRC007	60	61	0.9	1690	131	451	0.007
BRC007	61	62	0.2	309	57	210	0.008
BRC007	62	63	0.6	129	1310	1110	0.004

Hole-No	From-m	To-m	Ag-ppm	Cu-ppm	Pb-ppm	Zn-ppm	Au-ppm
BRC008	1	2	-100	6	19	214	0.004
BRC008	2	3	-100	25	43	159	0.003
BRC008	3	4	-100	51	66	160	0.004
BRC008	4	5	-100	527	33	242	0.004
BRC008	5	6	-100	119	-100	17	0.003
BRC008	6	7	0.2	780	4	31	0.005
BRC008	7	8	-100	358	15	104	0.006
BRC008	8	9	-100	1965	6	54	0.013
BRC008	9	10	0.2	347	4	21	0.008
BRC008	10	11	-100	292	5	632	0.009
BRC008	11	12	-100	218	13	785	0.008
BRC008	12	13	0.3	912	140	1430	0.01
BRC008	13	14	0.2	418	50	2270	0.004
BRC008	14	15	0.2	581	86	435	0.006
BRC008	15	16	0.2	981	116	634	0.008
BRC008	16	17	0.8	982	648	1190	0.009
BRC008	17	18	0.6	1620	565	1320	0.015
BRC008	18	19	0.8	1795	3460	1740	0.015
BRC008	19	20	-100	165	11	186	0.002
BRC008	20	21	0.5	961	159	942	0.005
BRC008	21	22	0.7	3160	31	500	0.011
BRC008	22	23	0.7	2820	367	749	0.015
BRC008	23	24	0.7	4210	22	309	0.016
BRC008	24	25	1.8	6310	19	330	0.054
BRC008	25	26	-100	412	4	202	0.004
BRC008	26	27	1.9	8290	13	236	0.017
BRC008	27	28	1.8	8690	13	163	0.031
BRC008	28	29	-100	226	3	156	0.006
BRC008	29	30	-100	130	2	148	0.003
BRC008	30	31	-100	183	5	152	0.004
BRC008	31	32	0.2	895	3	190	0.005
BRC008	32	33	0.8	3470	7	228	0.008
BRC008	33	34	-100	1765	5	175	0.005
BRC008	34	35	0.2	2460	5	173	0.007
BRC008	35	36	0.9	5890	7	237	0.015
BRC008	36	37	-100	631	3	161	0.006
BRC008	37	38	0.9	6240	9	220	0.023
BRC008	38	39	-100	258	10	78	0.003
BRC008	39	40	-100	1065	4	124	0.023
BRC008	40	41	-100	68	7	120	0.003
BRC008	41	42	-100	636	42	510	0.026
BRC008	42	43	0.3	56	944	1150	0.005

BRC008	70	71	2.2	344	4950	9530	0.117
BRC008	71	72	0.9	90	2010	5400	0.062
BRC008	72	73	0.3	69	594	1180	0.009
BRC008	73	74	0.9	328	1600	4970	0.018
BRC008	74	75	0.2	72	353	2120	0.026
BRC008	75	76	1	270	2000	8810	0.067
BRC008	76	77	-100	16	163	739	0.005
BRC008	77	78	-100	7	78	77	0.006
BRC008	78	79	-100	94	186	1640	0.051
BRC008	79	80	-100	64	43	3050	0.05
BRC008	80	81	-100	16	200	246	0.012
BRC008	81	82	-100	15	85	312	0.008
BRC008	87	88	-100	360	15	1910	0.017
BRC008	96	97	-100	103	214	795	0.004
BRC008	97	98	-100	180	77	1410	0.005
BRC008	98	99	0.2	110	189	610	0.005
BRC008	99	100	-100	42	155	476	0.003

Hole-No	From-m	To-m	Ag-ppm	Cu-ppm	Pb-ppm	Zn-ppm	Au-ppm
BRC009	40	41	0.3	120	155	839	0.024
BRC009	41	42	-100	452	89	276	0.005
BRC009	42	43	-100	123	35	134	0.007
BRC009	43	44	-100	566	20	213	0.008
BRC009	44	45	-100	13	9	83	0.009
BRC009	45	46	-100	34	4	149	0.005
BRC009	46	47	-100	10	5	128	0.004
BRC009	47	48	-100	4	10	65	0.007
BRC009	48	49	-100	194	6	704	0.006
BRC009	49	50	-100	776	43	567	0.008
BRC009	50	51	-100	17	5	158	0.005
BRC009	51	52	0.3	207	431	1340	0.005
BRC009	52	53	0.3	232	220	753	0.004
BRC009	53	54	-100	726	129	915	0.006
BRC009	54	55	-100	21	25	186	0.003
BRC009	55	56	-100	2	6	109	0.002
BRC009	56	57	-100	6	17	108	0.003
BRC009	57	58	-100	8	13	119	0.005
BRC009	58	59	-100	12	14	68	0.004
BRC009	59	60	-100	86	3	90	0.005
BRC009	60	61	-100	1620	3	132	0.005
BRC009	61	62	-100	1740	10	250	0.004

BRC009	62	63	0.2	2770	4	207	0.003
BRC009	63	64	-100	1275	7	192	0.005
BRC009	64	65	-100	428	3	106	0.003
BRC009	65	66	0.2	854	3	88	0.007
BRC009	66	67	0.2	608	2	77	0.005
BRC009	67	68	-100	1060	6	91	0.005
BRC009	68	69	-100	444	16	120	0.005
BRC009	69	70	-100	209	7	102	0.004
BRC009	70	71	-100	152	90	336	0.008
BRC009	71	72	-100	121	231	611	0.006
BRC009	72	73	-100	46	190	510	0.004
BRC009	73	74	-100	12	21	119	0.004
BRC009	74	75	-100	16	20	159	0.012
BRC009	75	76	-100	56	37	239	0.008
BRC009	76	77	-100	23	11	122	0.003
BRC009	77	78	0.3	91	252	412	0.007
BRC009	78	79	0.4	90	357	592	0.006
BRC009	79	80	-100	93	23	213	0.008
BRC009	80	81	-100	286	117	870	0.009
BRC009	81	82	-100	320	50	375	0.004
BRC009	82	83	-100	257	66	1620	0.01
BRC009	83	84	1	3980	25	351	0.008
BRC009	84	85	1.3	3260	98	4120	0.022
BRC009	85	86	-100	600	58	363	0.004
BRC009	86	87	-100	277	188	1040	0.004
BRC009	87	88	-100	232	81	385	0.005
BRC009	88	89	0.5	2280	17	259	0.014
BRC009	89	90	-100	254	20	136	0.006
BRC009	90	91	-100	299	66	300	0.007
BRC009	91	92	-100	392	13	134	0.005
BRC009	92	93	-100	251	25	89	0.003
BRC009	93	94	0.6	1670	141	178	0.007
BRC009	94	95	-100	399	6	175	0.006
BRC009	95	96	0.2	137	15	148	0.014
BRC009	96	97	-100	127	5	133	0.005
BRC009	97	98	0.2	200	12	119	0.004
BRC009	98	99	-100	144	19	77	0.006
BRC009	99	100	-100	148	102	249	0.005

Note: At this point in time Ark is not representing intersections with true width, as these are yet to be determined

About Ark Mines

Ark Mines Ltd (Ark) is a publicly listed company with five highly prospective tenements in the Lachlan Fold Belt, in the central west of New South Wales. Ark's exploration efforts are focussed on gold and base metals, whilst

ARK MINES LTD

Babinda Project Location

potential for "rare earth" and iron provide Ark with a diversified suite of valued commodities. Ark also has Exploration in interests Gold and Copper in central Kalimantan

FURTHER INFORMATION: Roger Jackson, Managing Director, Ark Mines Limited :+61400 408 550

Released through Ben Jarvis, Six Degrees Investor Relations: +61413150448

The information in this announcement that relates to Exploration Results, Mineral Resources or Ore Reserves has been compiled by Robert McLennan BSc(Hons), MSc, MAIG, who is a Fellow of The Australasian Institute of Mining and Metallurgy and who has more than ten years experience in the field of activity being reported on. Mr McLennan is a director of the Company. Mr McLennan has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr McLennan consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

mm023