

ASX/Media Release

6 December 2011

BrightStar Resources Ltd

ABN 86 121 985 395

1/1 Nairn Street Fremantle WA 6160 T. (+ 61) 8 9430 9966 F. (+ 61) 8 9430 9965

Board of Directors:

Warren Gilmour Executive Chairman warren@brightstarresources.com.au

Geoff Gilmour Managing Director geoff@brightstarresources.com.au

Paul Payne Technical Director paul@brightstarresources.com.au

Graeme Clatworthy Non-executive Director

Barry Bolitho Non-executive Director

BrightStar Resources Limited ASX code "BUT"

High Grade Gold at Miyabi

BrightStar Resources Limited ("BrightStar" or "Company") is pleased to announce high grade gold results from its first pass exploration drilling at the 520,000oz Miyabi Gold Project.

- New discovery with high grade intersection of <u>21m at 6.7g/t Au</u> <u>from 15m to end of hole</u> in wide spaced RAB drilling with >1km untested strike potential;
- Previously unreported results include:
 - MBRB833 24m @ 0.52g/t Au from 15m* (including 6m at 1.61g/t from 24m)
 - MBRB838 33m @ 4.36g/t Au from 9m* (including 21m @ 6.7g/t Au from 15m*) which includes 3m at 22.6g.t Au from 33m)
 - MBRB850 15m @ 0.81g/t Au from 24m* (including 3m @ 2.5g/t Au from 33m)
- (* hole ended in mineralisation)
 - These results are from the area south west of the 130,000oz Kilimani Deposit and represent extensions to the Kilimani resource and a new, high grade zone with untested strike potential of >1000m;
 - All intersections are in oxidized rock and many of the holes ended in gold mineralisation;
 - Results continue to confirm the potential of the project to host additional gold Mineral Resources including high grade mineralisation;
 - RC drilling of targets on the Contact Zone has been completed with results expected in late December and January;
 - Geological observations from RC holes suggests that broad zones of primary sulphide mineralisation have been intersected.

BrightStar Technical Director Mr Paul Payne said "The high grade intersection south west of the Kilimani deposit further demonstrates that gold mineralisation at Miyabi is prolific and that it also has the potential to host high grade resources. Deeper drilling of the new discoveries will take place as soon as possible in the New Year."

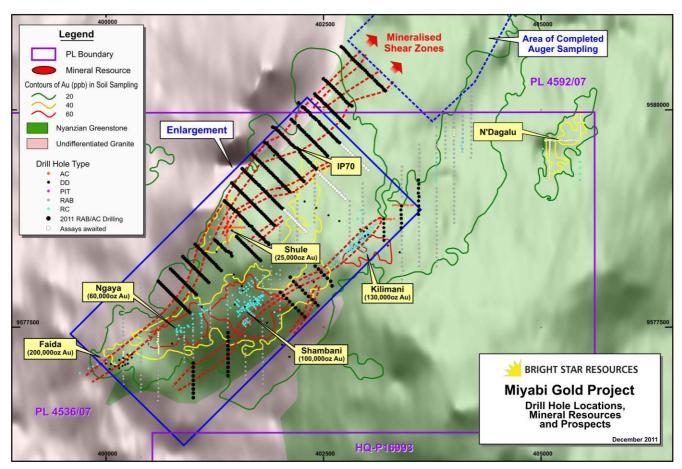
These latest results define two new zones of mineralisation within the southern portion of the Miyabi Structural Corridor. The zones have been tested with wide spaced RAB drilling and each has strike length potential of approximately 1km.

Planning has commenced for further RC and core drilling of the multiple high priority targets in 2012.

Miyabi Exploration Program Overview

BrightStar's first pass RAB program has been very successful with the following key outcomes:

- Multiple extensive mineralised structures have been discovered with numerous resource grade intersections;
- All holes were shallow (typically <40m) and did not penetrate to fresh rock and many holes ended in mineralisation;
- The newly discovered structures are similar in nature to the Miyabi Structural Corridor (MSC) which hosts the existing 520,000oz Mineral Resource;
- Resource grade intersections in the BrightStar drilling remain strongly open in many areas especially to the northeast where the MSC remains untested for a further 3km;


The 2011 BrightStar RAB drilling program at Miyabi was designed to test much of the 5km long granite/greenstone contact zone at the northwest margin of the greenstone belt as well as poorly explored targets within the Miyabi Structural Corridor (MSC). Results from the majority of RAB holes have now been received. All intersections >0.1g/t Au are listed in Table 1. The drilling and interpreted structures are shown in Figure 1 and Figure 2.

The program in the northern Contact Zone consisted of shallow RAB holes at 30m spacings along 200m spaced cross sections. Assay results and geological logging confirm the presence of multiple mineralised shear zones ranging from 20m to 150m in width. Several of the structures remain strongly open to the north east where the prospective greenstone rocks remain untested by drilling for a further 3km.

The drilling near the southern boundary of the MSC was carried out at 40m spacings on 200m-400m spaced sections. Assay results have returned strong mineralisation in several structures. Of most interest is the 21m at 6.7g/t Au in MBRB838 and supported by 3m @ 0.67g/t Au in MBRB827. These holes suggest that a strongly mineralised structure occurs adjacent to the southern greenstone contact with strike potential of >1km. A cross section of 5700E is shown in Figure 3.

RC drilling beneath the strongest RAB results in the Contact Zone has recently been completed. Zones of brecciation, silicification and sulphide mineralisation were observed in most holes confirming that the mineralised zones defined by the RAB drilling extend into fresh rock. Assay results are expected in late-December and January.

Planning is underway for an extensive RC and diamond drilling program at the end of the wet season. Drilling is expected to commence in April 2012. Results for a small number of RAB holes are still awaited.

Figure 1 Miyabi Deposits and Drilling

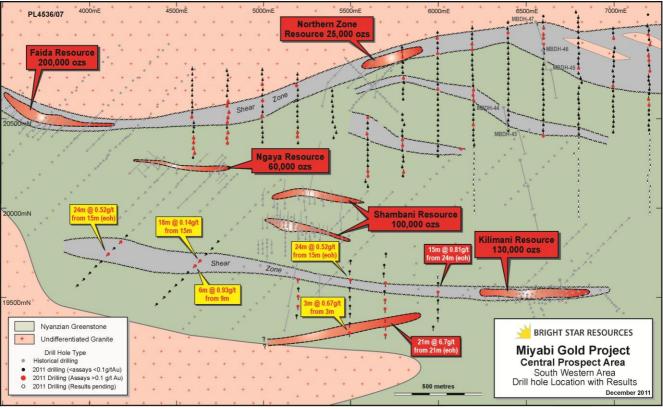


Figure 2: Central Area with 2011 Drilling Results

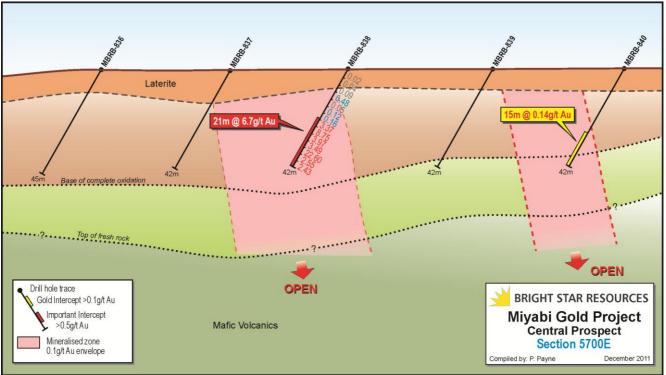


Figure 3 Cross Section 5700E

(Intersections shaded in grey have been previously reported)											
	C	Collar Locatio	on and Orient	ation (loca					Intersection >		
Hole	Туре	х	Y	z	Total	Dip	Azimuth	From	То	Length	Au
MDDD 470		F (00	20.170	1 201	Depth		0	(m)	(m)	(m)	(ppm)
MBRB478	RAB	5,600 5,600	20,176	1,201 1,200	33 30	-60 -60	0	6 18	9 21	3	0.25
MBRB479	RAB	5,000	20,206	1,200	30	-60	and	27	30 (eoh)	3	0.11
MBRB486	RAB	5,599	20,415	1,200	23	-60	0	21	23 (eoh)	2	0.22
MBRB489	RAB	5,600	20,415	1,200	25	-60	0	0	3	3	0.27
MBRB491	RAB	5,999	20,300	1,204	33	-60	0	15	18	3	0.21
MBRB503	RAB	6,000	20,663	1,198	30	-60	0	21	30 (eoh)	9	1.82
MBRB510	RAB	6,000	20,865	1,200	27	-60	0	6	9	3	0.30
MBRB513	RAB	5,998	20,949	1,195	25	-60	0	9	12	3	0.34
MBRB519	RAB	6,200	20,463	1,196	33	-60	0	18	21	3	0.23
MBRB524	RAB	6,202	20,610	1,197	27	-60	0	3	9	6	0.13
MBRB526	RAB	6,202	20,667	1,196	24	-60	0	6	18	12	0.32
MBRB534	RAB	6,200	20,895	1,195	30	-60	0	18	24	6	1.14
		-,	,	_,			luding	21	24	3	2.11
MBRB535	RAB	6,200	20,926	1194	27	-60	0	12	27 (eoh)	15	0.21
MBRB558	RAB	6,400	20,989	1190	29	-60	0	18	29 (eoh)	11	0.16
MBRB561	RAB	6,600	20,408	1186	30	-60	0	12	27	15	0.27
MBRB579	RAB	6,601	20,923	1187	16	-60	0	9	16 (eoh)	7	0.27
MBRB593	RAB	6,802	20,790	1179	27	-60	0	21	24	3	0.10
MBRB602	RAB	7,001	20,958	1170	21	-60	0	15	18	3	0.15
MBRB610	RAB	7,202	20,574	1175	27	-60	0	18	21	3	0.22
MBRB611	RAB	7,199	20,608	1175	29	-60	0	6	9	3	0.17
MBRB617	RAB	7,198	20,979	1171	21	-60	0	12	15	3	0.18
MBRB625	RAB	6,601	20,955	1190	27	-60	0	3	6	3	0.20
							and	21	24	3	0.12
MBRB626	RAB	6,601	20,975	1190	22	-60	0	21	22 (eoh)	1	0.27
MBRB627	RAB	6,605	21,012	1190	30	-60	0	24	30 (eoh)	6	0.12
MBRB628	RAB	6,597	21,043	1190	31	-60	0	18	27	9	0.16
MBRB636	RAB	5,798	20,349	1217	27	-60	0	18	27 (eoh)	6	0.13
MBRB637	RAB	5,797	20,378	1217	27	-60	0	18	27 (eoh)	9	0.89
						inc	luding	24	27 (eoh)	3	1.76
MBRB649	RAB	5,801	20,722	1217	25	-60	0	18	21	3	0.12
MBRB653	RAB	5,797	20,839	1217	25	-60	0	15	24	9	0.29
MBRB654	RAB	5,794	20,868	1217	25	-60	0	18	25 (eoh)	7	0.64
MBRB668	RAB	7,402	20,826	1168	25	-60	0	24	25 (eoh)	1	6.08
MBRB669	RAB	7,402	20,858	1167	25	-60	0	0	3	3	0.16
MBRB671	RAB	7,400	20,916	1167	25	-60	0	0	3	3	0.15
							and	24	25 (eoh)	1	0.23
MBRB688	RAB	7,600	20,838	1170	25	-60	0	24	25 (eoh)	1	0.10
MBRB694	RAB	7,600	21,023	1170	25	-60	0	18	24	6	0.30
MBRB699	RAB	8,003	20,542	1165	25	-60	0	12	15 25 (aab)	3	0.12
MDDD700	DAD	0.001	20 574	1105	25	60	and	24	25 (eoh)	2	0.58
MBRB700	RAB	8,001	20,574	1165	25	-60	0	15	18	3	0.18
MBRB702	RAB	8,001	20,629	1165	25	-60	0 Iversities as	0	18	18	0.99
		F100	20201	424-			luding	0	6	6	2.56
MBRB733	RAB	5198	20391	1215	27	-60	315	15	18	3	0.14
MBRB734	RAB	5198	20417	1215	25	-60	315	15	18	3	0.12
MBRB743	RAB	5195	20687	1215	25	-60	315	0	3	3	0.28
MBRB752	RAB	4999	20535	1215	27	-60	315	21	27 (eoh)	6	0.12
MBRB755	RAB	4998	20629	1215	27	-60	315	21	27 (eoh)	6	0.42
MBRB757	RAB	4998	20690	1215	23	-60	315	6	9	3	0.13
MBRB761	RAB	4798	20359	1207	26	-60	315 and	3	6 19	3	0.30
MBRB762	RAB	4796	20386	1207	27	-60	and 315	15 18	<u>18</u> 21	3	0.14
MBRB762 MBRB763	RAB	4796	20386	1207	27	-60	315	18 6	9	3	0.14
MBRB765	RAB	4797	20417	1207	27	-60	315	18	21	3	0.12
MBRB766	RAB	4797	20475	1207	27	-60	315	18	21	9	0.12
MBRB767	RAB	4801	20533	1207	30	-60	315	24	24	3	0.10
MBRB767	RAB	4807 4798	20555	1207 1207	23	-60 -60	315 315	12 12	27 23 (eoh)	<u> </u>	0.16
MBRB769	RAB	4803	20509	1207	23	-60	315	6	23 (e011) 9	3	0.20
MBRB777	RAB	4609	20394	1207	31	-60	315	9	27	18	0.20
MBRB778	RAB	4603	20302	1205	33	-60	315	30	33 (eoh)	3	0.13
MBRB779	RAB	4605	20328	1205	33	-60	315	3	6	3	0.13
			20001	1200			010		•		

Table 1: List of All Intersections > 0.1g/t Au

MBRB780	RAB	4606	20388	1205	30	-60	315	3	6	3	0.17
							and	21	24	3	0.13
MBRB784	RAB	4597	20506	1205	37	-60	315	24	33	9	0.14
MBRB795	RAB	4114	19722	1198	39	-60	180	15	39 (eoh)	24	0.51
							including	24	30	6	1.61
MBRB827	RAB	5,500	19,284	1,198	39	-60	135	3	6	3	0.67
MBRB833	RAB	5,502	19,583	1,196	39	-60	135	15	39 (eoh)	24	0.52
MBRB836	RAB	5,700	19,268	1,200	45	-60	135	9	12	3	0.10
							and	33	36	3	0.15
MBRB837	RAB	5,702	19,318	1,202	45	-60	135	9	12	3	0.23
MBRB838	RAB	5,700	19,362	1,204	42	-60	135	9	42 (eoh)	33	4.36
							including	21	42 (eoh)	21	6.7
							including	36	39	3	22.6
MBRB839	RAB	5,700	19,417	1,200	42	-60	135	0	3	3	0.29
MBRB840	RAB	5,699	19,468	1,196	42	-60	135	27	42 (eoh)	15	0.14
MBRB842	RAB	5,701	19,566	1,200	42	-60	135	18	33	15	0.13
MBRB850	RAB	5,999	19,514	1,205	39	-60	135	24	39 (eoh)	15	0.81
						ine	cluding	33	36	3	2.5
MBAC176	AC	7,001	20,682	1176	33	-60	0	27	30	3	0.15
MBAC182	AC	7,207	20,773	1172	36	-60	0	18	21	3	0.11
MBAC182	AC	7,207	20,773	1172	36	-60	0	27	33	6	0.22
MBAC184	AC	7,203	20,836	1172	30	-60	0	15	30 (eoh)	15	0.15
MBAC185	AC	7,199	20,859	1172	24	-60	0	12	15	3	0.12
MBAC187	AC	7,207	20,923	1172	25	-60	0	6	9	3	0.19
							and	13	16	3	0.26
MBAC188	AC	4185	19792	1198	39	-60	180	18	21	3	0.10
MBAC197	AC	4640	19684	1198	36	-60	180	15	33	18	0.14
MBAC198	AC	4609	19654	1198	34	-60	180	9	15	6	0.93

(eoh) indicates that the hole ended in gold mineralisation

- Most samples analysed in 3m composites
- Sampling carried out using a cyclone and riffle splitter at 1m intervals
- Sample preparation at ALS Global in Mwanza, Tanzania
- Gold analysis using 50g aqua regia carried out by OMAC Laboratories in Ireland
- QAQC samples submitted routinely with excellent results
- Holes located by GPS then transformed to local grid coordinates
- Intersections are generally interpreted to represent true width. Where holes ended in mineralisation, true thickness may be greater than the intersection thickness.

Miyabi Joint Venture

The Miyabi project is a Joint Venture with UK based African Eagle Resources plc ("African Eagle") where BrightStar may earn 75% of the Miyabi Project in Tanzania.

The Miyabi Project is located in the Lake Victoria Gold Field of Tanzania, some 150km southwest of BrightStar's 100% owned Kitongo Gold Project.

Mineral Resources

A summary of the SRK Mineral Resource estimate at a 0.5g/t Au cut-off is shown below.

Donasit	Indicated			Inferred			Total Resource		
Deposit	Mt	g/t	Moz	Mt	g/t	Moz	Mt	g/t	Moz
Faida	3.5	1.5	0.17	1.0	0.9	0.03	4.4	1.4	0.20
Ngaya	0.2	1.0	0.01	1.5	1.1	0.05	1.7	1.1	0.06
Shambani	1.6	1.5	0.07	0.8	1.1	0.03	2.4	1.3	0.10
Kilimani	2.6	1.4	0.12	0.3	1.6	0.01	2.9	1.4	0.13
Northern Zone				1.0	0.8	0.02	1.0	0.8	0.02
Total	7.9	1.5	0.37	4.5	1.0	0.15	12.4	1.3	0.52

Miyabi Mineral Resource	Estimate 0.5g/t Au Cut-o	ff (SRK Estimate 2006)
wilyabi willer ar Kesour ce	Estimate 0.5g/t Au Cut-0	II (SKK Estimate 2000)

*Rounding errors may occur

For further information, please contact:

Geoffrey Gilmour Managing Director BrightStar Resources +61 8 9430 9966 geoff@brightstarresources.com.au Paul Payne Technical Director BrightStar Resources +61 8 9430 9966 paul@brightstarresources.com.au

Competent Person Statement

The information in this report that relates to Mineral Resources and exploration results is based on information compiled by Mr Paul Payne, a director and full time employee of BrightStar and a Member of The Australasian Institute of Mining and Metallurgy. Mr Payne has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Payne consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.