

ASX and MEDIA RELEASE

Wednesday 20th April 2011

CLUFF MADAGASCAR : AMMTEC REPORT RECEIVED FOR LARGE GOLD SAMPLE

Cluff Resources Pacific NL (Cluff) announces today receipt of the detailed report from Ammtec laboratories in Perth regarding the detailed metallurgical testwork on the 565kg sample of gold bearing material recently brought back from Madagascar.

Highlights of the attached report are as follows:

- 1. The gold head assay of the sample was calculated at 12.3 grams per tonne.
- 2. The gravity recoverable gold (GRG) content of the overall sample was very high (92.55%)
- 3. The majority of the GRG was coarse as seen by the high gold recovery (82.28%) in the 850 micron stage.
- 4. A further 10.01% of the gold in the sample was collected as GRG in the 212 micron stage.
- 5. The remainder of the gold content (up to a total of 99.9% total recovery) is recoverable via cyanide leaching.
- 6. Gold dissolution kinetics were moderate with the cyanidable gold content being solubilised within 24 hours from the start of cyanidation leach processing.
- 7. The total recovery of gold in the Overall Composite was extremely high, with 99.9% of total gold being recovered with the combination of GRG testwork and direct cyanidation of the GRG tailings.

The company regards the results detailed in the report to be very encouraging. In particular, the opportunity to recover the majority of gold in a concentrate from the vein material at the Vatovorona Gold Project using costeffective means of crushing, processing and recovery must be regarded as a major positive.

The company has been investigating processing equipment options with plant and equipment manufacturers since our first announcement on the suitability of the rock materials for processing. Considerations such as rock type and wear and tear on machinery and parts, energy efficiency, processing time and security of product are all of major importance. OH & S standards must also be maintained.

Small laboratory scale "Knelson" concentrators were used at Ammtec for the GRG stages, indicating that a centrifugal concentrator system would be more than adequate to recover a high yield concentrate. Research is being conducted regarding this style of processing being successfully implemented in Madagascar. Crushing the raw material to a very small size is not necessary, indicating that the use of high energy-consuming crushing equipment such as ball mills is not essential. With crushing to 0.2 mm via less intensive means, utilising a jaw crusher followed by a Vertical Shaft Impactor (VSI) for example, processing times and complexity of processing will be greatly reduced, and the costs of processing minimised.

The company looks forward to continuing the development of the Vatovorona Gold Project.

Yours faithfully,

Sa

Scott Enderby, Company Secretary / Executive Director

Registered Office: Suite 21, Level 7, 44 Bridge St. Sydney 2000 Australia ASX Code: CFR Postal Address: Suite 21, Level 7, 44 Bridge St. Sydney 2000 Australia Tele-Communications: Tel: (612) 9247 2277 Fax: (612) 9247 7055 email: Cluff@bigpond.com Internet: www.cluff.com.au

Metallurgical Testwork conducted upon

Gold Ore Samples from Madagascar Gold Project

for

Cluff Resources Limited

Report No. A13425

April 2011

TABLE OF CONTENTS

PAGE NO.

SUM	MARY		(i)
1.	INTRO	ODUCTION	1
2.	THE S	SAMPLES	2
3.	SAMP	LE PREPARATION	2
4.	TEST	WORK WATER	2
5.	ANAL	YTICAL	3
6.	HEAD	ASSAYS	3
	6.1	Test Procedure	3
	6.2	Results	4
7.	GRIN	D ESTABLISHMENT TESTWORK	4
	7.1	Test Procedure	4
	7.2	Grind Times	4
8.	GRAV	ITY RECOVERABLE GOLD (GRG) TESTWORK	5
	8.1	Test Procedure – GRG Content Determination	5
	8.2	Results	6
	8.3	Comments	6
9.	DIREC	CT CYANIDATION TIME LEACH TESTWORK	7
	9.1	Cyanidation Time Leach Testwork on Gravity Tailing	7
	9.2	Results	7
	9.3	Comments	8
10.	OVER	ALL DISTRIBUTION	8
	10.1	Results	8
	10.2	Comments	8

FIGURE

Figure 1	Metallurgical ⁻	Test Program	Flowsheet -	GRG Testwork

APPENDICES

Appendix I	Head Assay
Appendix II	Gravity Recoverable Gold (GRG) Testwork - Details and Results
Appendix III	Direct Cyanidation Time Leach Testwork - Details and Results
Appendix IV	Overall Distribution - Details and Results

SUMMARY

A defined program of metallurgical testwork was carried out on three (3) gold ore samples from the Madagascar Gold Project for Cluff Resources Limited.

Salient test data are summarised below:

• Head Assays

Gold screen fire assay testwork was carried out on each of the three (3) ore samples and also on a 1 kg sub-sample of the Overall Composite. Comprehensive analysis of the Overall Composite including silver, arsenic, mercury, carbon, sulphur, antinomy and tellurium was carried out as well as a general elemental scan.

	+75	μm		-75 μm	Calc'd Head	
Sample No.	Weight (g)	Au (g/t)	Weight (g)	Au1 (g/t)	Au2 (g/t)	Au (g/t)
Q1	4.2	646	1008.9	7.90	7.90	10.5
Q2	2.2	1356	1036.1	7.15	8.07	10.4
Q3	4.9	348	981.2	4.27	4.13	5.92
Overall Composite	13.0	387	988.7	7.31	7.47	12.3

• Gravity Recoverable Gold (GRG) Testwork

A bulk 50 kg sub-sample from the Overall Composite was subjected to gravity-recoverable-gold (GRG) testwork adopting the procedure described by Andre Laplante (McGill University, Canada) and *Knelson* Concentrators of Canada/ConSep Australia Pty Ltd.

	Sample ID Material/Stage		ght	Gold			
Sample ID	Material/Stage	(g)	(%)	Assay (g/t)	Total (µg)	Dist'n (%)	
	Gravity Concentrate : GRG Stage 1 (Grade calc'd from size-by-size gold assay on gravity concentrate)	92.7	0.19	4441	411653	82.28	
Overall Composite	Gravity Concentrate : GRG Stage 2 (Grade calc'd from size-by-size gold assay on gravity concentrate)	80.9	0.16	619	50086	10.01	
	Gravity Concentrate : GRG Stage 3 (Grade calc'd from size-by-size gold assay on gravity concentrate)	94.2	0.19	13.7	1292	0.26	
	Gravity Tailing - GRG Stage 3 (Duplicate gold assay)	49732.2	99.46	0.75	37299	7.45	

• Direct Cyanidation Time Leach Testwork

The tailings from the GRG testwork were subjected to direct cyanidation testwork to determine the gold leach rate recovery.

Sample Identity	Test	Grind Size P ₈₀			u Extract @ Hours	ion		Consur (kg	
	No.	(µm)	2	4	8	24	48	Lime	NaCN
Overall Composite (Gravity Tailing)	HS24997	75	77.45	79.23	80.12	85.46	98.81	0.41	0.94

• Overall Distribution

An overall distribution table has been created to provide a summary of the GRG testwork as well as the cyanidation of the gravity tail in order to determine the overall gold extraction of the testwork program.

		-	t Volume (ml)	Gold				
Sample ID	Material/Stage	Weight (g)		Ass	say Total		Dist'n	
		(9)		(g/t)	(mg/l)	(µg)	(%)	
	Gravity concentrate: GRG Stage 1	92.7		4441		411653	81.53	
	Gravity concentrate: GRG Stage 2	80.9		619		50086	9.92	
Overall	Gravity concentrate: GRG Stage 3	94.2		13.7		1292	0.26	
Composite	Cyanidation Leach Residue: GRG Stage 3 Tailings	49732.2		0.01		497	0.10	
	Cyanidation Leach Liquor: GRG Stage 3 Tailings		74598.3		0.555	41402	8.20	
		TOTAL R	ECOVERY				99.90	

1. INTRODUCTION

Mr Todd Axford, representing Cluff Resources Limited, requested that ALS Ammtec conduct a defined program of metallurgical testwork in conjunction with three (3) samples of gold ore from the Madagascar Gold Project.

This work included the following:

- Sample preparation
- Head assays
- Grind establishment testwork
- GRG testwork
- > Direct cyanidation time leach testwork

The test program is presented as a flow diagram in Figure 1.

The testwork was controlled by Mr Todd Axford on behalf of Cluff Resources Limited. Jack Smith supervised the program on behalf of ALS Ammtec. Test results were communicated between ALS Ammtec and the client as they became available, in this way the program progressed on a fully informed basis.

RON GROGAN Chief Executive - Metallurgy JACK SMITH Metallurgist

2. THE SAMPLES

ALS Ammtec received three (3) samples of gold ore from the Madagascar Gold Project.

The samples were designated as follows:

Sample ID	Weight (kg)
Q1	192.0
Q2	93.0
Q3	189.5

3. SAMPLE PREPARATION

The Madagascar gold samples were control crushed to <3.35 mm and thoroughly homogenised by passing the entire sample three times through a rotary sample splitting device. A 1.0 kg sub-sample was prepared using the rotary splitter and submitted for gold analysis via screen fire assay.

The remaining sample was utilised to prepare an Overall Composite using the recipe provided by the client as follows:

Sample ID	Ratio by Weight
Q1	2
Q2	1
Q3	2

The Overall Composite was thoroughly homogenised by passing the entire sample three times through a rotary sample splitting device and prepared into 1 kg charges for the testwork program.

4. TESTWORK WATER

Perth tap water was utilised for all of the testwork in the program.

5. ANALYTICAL

All of assay samples, generated during the course of the test program, were submitted to ALS Ammtec's assay laboratory for analysis.

The following analytical methods were employed:

Gold in ores:	Screen fire assay/ICP-MS finish
Gold in leach residues:	Fire assay/ICP-MS finish
Gold in solution:	ICPMS
General element scan:	Mixed acid digestion/ICP-OES finish

6. HEAD ASSAYS

Gold screen fire assay testwork was carried out on each of the three (3) ore samples and also on a 1 kg sub-sample of the Overall Composite. Comprehensive analysis of the Overall Composite was also carried out which included silver, arsenic, mercury, carbon, sulphur, antinomy and tellurium as well as a general elemental scan.

6.1 Test Procedure

The screen fire assay procedure was as follows:

- (1) A cloth screen (75 μ m) is assembled in a plastic holder prior to sample addition.
- (2) The pulverised sample is added incrementally to the screen. The entire sample is screened, if the screen oversize is greater than 50 g in mass it is re-pulverised for 5 seconds and re-screened.
- (3) The final masses of the screen oversize and undersize are recorded.
- (4) The entire screen oversize sample (including the screening cloth) is sent to fire assay.
- (5) The screen undersize is homogenised with duplicate sub-samples split for fire assay.

6.2 Results

Comprehensive assay data are presented in Appendix I, whilst selected data are presented in the following table:

	+75	μm		-75 μm		Calc'd Head
Sample No.	Weight (g)	Au (g/t)	Weight (g)	Au1 (g/t)	Au2 (g/t)	Au (g/t)
Q1	4.2	646	1008.9	7.90	7.90	10.5
Q2	2.2	1356	1036.1	7.15	8.07	10.4
Q3	4.9	348	981.2	4.27	4.13	5.92
Overall Composite	13.0	387	988.7	7.31	7.47	12.3

7. GRIND ESTABLISHMENT TESTWORK

7.1 Test Procedure

The test procedure was as follows:

- (1) A 1.0 kg sub-sample of the Overall Composite was ground in a laboratory stainless steel rod mill at 50% solids (w/w) for various times.
- (2) The ground solids were wet screened at $850 \ \mu m$.
- (3) The plus 850 μ m screen oversize fractions were dried and then rescreened at 1400, 1180, 1000 and 850 microns.
- (4) The resultant sizing data was utilised to determine the grinding time necessary to realise the target grind size P_{80} 850 μ m.
- (5) Another 1.0 kg sub-sample of the Overall Composite was ground in a laboratory stainless steel rod mill at 50% solids (w/w) for various times.
- (6) The ground solids were wet screened at 75 μ m.
- (7) The plus 75 μm screen oversize fractions were dried and then rescreened at 250, 212, 180, 150, 125, 106, 90 and 75 microns in order to determine the grind time necessary to realise the target sizes P₈₀ 212 and 75 microns.

7.2 Grind Times

Composite Identity	Feed Particle Size (mm)	Target Grind Size P80 (µm)	Requisite Grind Time* (min' sec")
		850	1'10"
Overall Composite	<3.35	212	6' 52"
		75	22' 02"

* 1.0 kg sample

8. GRAVITY RECOVERABLE GOLD (GRG) TESTWORK

A bulk 50 kg sub-sample from the Overall Composite was subjected to gravityrecoverable-gold (GRG) testwork adopting the procedure described by Andre Laplante (McGill University, Canada) and *Knelson* Concentrators of Canada/ConSep Australia Pty Ltd.

8.1 Test Procedure – GRG Content Determination

The test procedure was as follows:

- (1) The GRG test itself consists of three sequential liberation and recovery stages.
- (2) The progressive grinding is necessary in order to obtain an accurate GRG value, an indication of the size distribution of the GRG and a measure of progressive liberation.
- (3) The GRG test was based on the treatment of a sub-sample of each Gold Fields samples using a laboratory 3" *Knelson* concentrator.
- (4) The procedure involves three stages of grinding, *Knelson* concentration, total sample size-by-size gold analysis on each concentrate and total fire assay of each sized fraction.
- (5) Gold analysis was also carried out on the final tailing from stage 3.

			GRG Test Conditions					
Sample ID	GRG Stage	Grind Size (µm)	Knelson Operation	Sample Collection/Analysis				
	Stage 1	P ₈₀ 850	Feed Rate: 800-1000 g/min Fluid'n Water: 3.5 lpm	Total concentrate size-by-size Au analysis on gravity concentrate.				
Overall Composite	Stage 2	P ₈₀ 212	Feed Rate: 600-900 g/min Fluid'n Water: 3.5 lpm	Total concentrate size-by-size Au analysis on gravity concentrate.				
	Stage 3	P ₈₀ 75	Feed Rate: 400-800 g/min Fluid'n Water: 3.5 lpm	Total concentrate size-by-size Au analysis on gravity concentrate.				

The following table summarises the test procedure:

8.2 Results

The following table summarises the test procedure:

		Wei	Weight		Gold		
Sample ID	Material/Stage	(g)	(%)	Assay (g/t)	Total (µg)	Dist'n (%)	
	Gravity Concentrate : GRG Stage 1 (Grade calculated from size-by-size gold assay on gravity concentrate)	92.7	0.19	4441	411653	82.28	
Overall Composite	Gravity Concentrate : GRG Stage 2 (Grade calculated from size-by-size gold assay on gravity concentrate)	80.9	0.16	619	50086	10.01	
	Gravity Concentrate : GRG Stage 3 (Grade calculated from size-by-size gold assay on gravity concentrate)	94.2	0.19	13.7	1292	0.26	
	Gravity Tailing - GRG Stage 3 (Duplicate gold assay)	49732.2	99.46	0.75	37299	7.45	

Detailed test report sheets are presented in Appendix II.

8.3 Comments

- The gravity recoverable gold (GRG) content of the overall composite was very high (92.55%).
- The majority of the GRG was coarse as seen by the high gold recovery (82.28%) in the P_{80} 850 μ m stage. This conclusion is confirmed by the size-by-size analysis of the gravity concentrate from this stage.
- A further 10.01% of the gold in the sample was collected in the P_{80} 212 μ m stage.
- Duplicate gold assays taken from the GRG stage 3 tailing indicate that 7.45% of the total gold in the Overall Composite remained unrecovered.

9. DIRECT CYANIDATION TIME LEACH TESTWORK

The tailings from the GRG testwork were subjected to direct cyanidation testwork to determine the gold leach rate recovery.

9.1 Cyanidation Time Leach Testwork on Gravity Tailing

The test procedure was as follows:

- (1) A 3.0 kg sub-sample of the gravity tail (P_{80} 75 µm) was transferred into a six-litre baffled Perspex mechanically agitated vat. (two separate vat for each sample)
- (2) Perth tap water was added to establish a slurry density of 40% solids (w/w).
- (3) Sufficient hydrated lime (60% CaO) was added to each slurry to establish a pH of approximately 10.5.
- (4) An addition of solid sodium cyanide was made to each slurry to establish initial nominal cyanide solution strength of 0.10% (w/v).
- (5) The vat was sparged with oxygen to provide elevated dissolved oxygen content to the slurry.
- (6) At intervals (2, 4, 8 and 24 hours) during the leach 100 ml of leach pulp was dipped out and filtered to provide sufficient solution for gold analysis. A 10 ml aliquot of the filtered solution sample was titrated for cyanide with silver nitrate and if required further lime and cyanide were added to maintain desired pH and cyanide solution strength (0.05%).
- (7) At the termination of the tests (48 hours) the terminal pH, oxygen and cyanide levels were determined and a solution sample was taken for gold analysis.
- (8) The residual slurries were filtered, washed and dried to provide leach residue solids. A sub-sample of the leach residue solids was submitted for gold analysis.

9.2 Results

A summary of extraction results is presented in the following table:

Sample Identity	Test			Grind Size P ₈₀		% Au Extraction @ Hours					mption /t)
campio racinty	No.	(µm)	2	4	8	24	48	Lime	NaCN		
Overall Composite (Gravity Tailing)	HS24997	75	77.45	79.23	80.12	85.46	98.81	0.41	0.94		

Detailed test report sheets are presented in Appendix III.

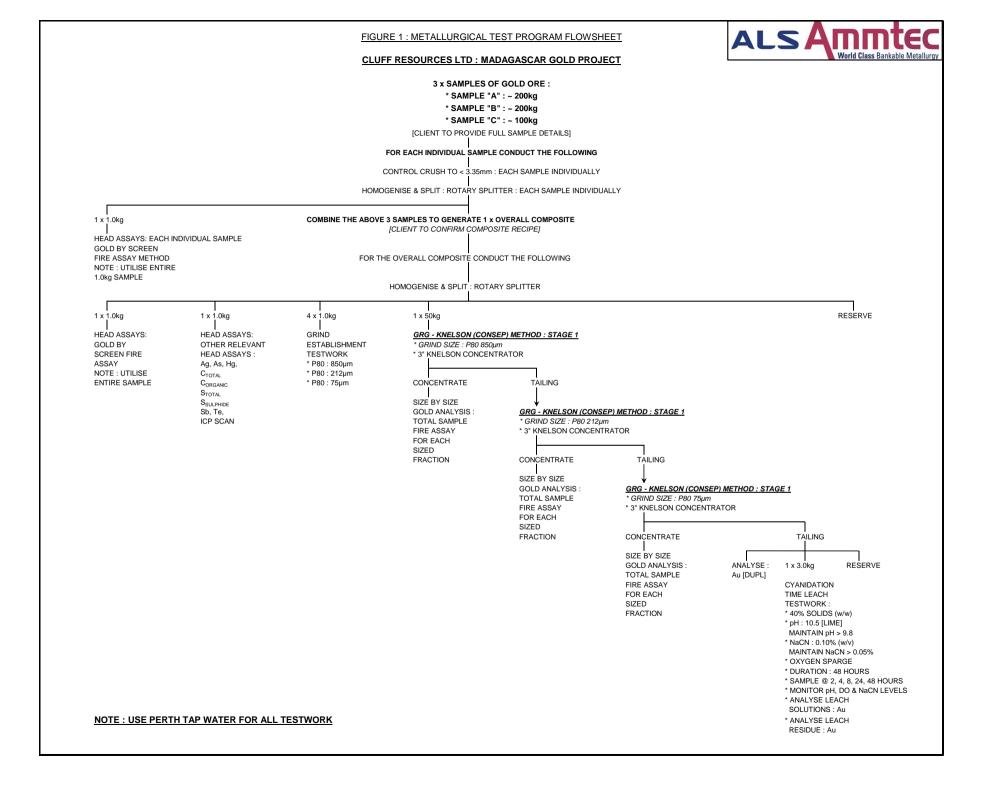
9.3 Comments

- Direct cyanidation leaching of the Overall Composite gravity tailing, resulted in excellent gold extraction levels (98.81%).
- Gold dissolution kinetics were moderate with the bulk of the cyanidable gold content being solubilised within 24 hours from the start of cyanidation leach processing.
- Reagent consumption levels were low; lime consumption levels were 0.41 kg/t whilst sodium cyanide consumption levels were 0.94 kg/t.

10. OVERALL DISTRIBUTION

An overall distribution table has been created to provide a summary of the GRG testwork as well as the cyanidation of the gravity tail in order to determine the total gold extraction of the testwork program for the Overall Composite.

10.1 Results


					Go	old	
Sample ID	Material/Stage	Weight (g)	Volume (ml)	As	say	Total	Dist'n
				(g/t)	(mg/l)	(µg)	(%)
	Gravity concentrate: GRG Stage 1	92.7		4441		411653	81.53
	Gravity concentrate: GRG Stage 2	80.9		619		50086	9.92
Overall	Gravity concentrate: GRG Stage 3	94.2		13.7		1292	0.26
Composite	Cyanidation Leach Residue: GRG Stage 3 Tailings	49732.2		0.01		497	0.10
	Cyanidation Leach Liquor: GRG Stage 3 Tailings		74598.3		0.555	41402	8.20
	-	TOTAL RI	ECOVERY				99.90

Detailed test report sheets are presented in Appendix IV.

10.2 Comments

- The total recovery of gold in the Overall Composite was extremely high, with 99.9% of total gold being recovered with the combination of GRG testwork and direct cyanidation of the GRG tailing.
- Whilst the gravity recoverable gold in the Overall Composite sample is very high (>90%) the bulk of the remaining gold in the sample is recoverable by conventional cyanidation leaching in an agitated vat.

FIGURE

APPENDICES

APPENDIX I

Head Assays

HEAD ASSAYS

ANALYTE	UNIT	OVERALL COMPOSITI
Au _{SFA}	g/t	12.3
Ag	g/t	<0.3
AI	%	3.04
As	ppm	<10
Ва	ppm	400
Ве	ppm	1.2
Bi	ppm	<10
C _{TOTAL}	%	<0.03
C _{ORG}	%	<0.03
Са	ppm	5000
Cd	ppm	<5
Со	ppm	5
Cr	ppm	40
Cu	ppm	32
Fe	ppm	2.66
Hg	ppm	0.2
K	ppm	1.4
Li	ppm	10
Mg	ppm	4800
Mn	ppm	200
Мо	ppm	<5
Na	%	4920
Ni	ppm	60
Р	ppm	<100
Pb	ppm	<5
S _{TOTAL}	%	0.02
S _{SULPHIDE}	%	<0.02
Sb	ppm	0.2
SiO ₂	%	75.2
Sn	ppm	50
Sr	ppm	76
Те	ppm	0.8
Th	ppm	4
Ti	ppm	1600
U	ppm	1.4
V	ppm	40
Υ	ppm	24
Zn	ppm	26
Zr	ppm	20

SCREEN FIRE ASSAY DETAILS

Sample	+75	μm		Calc'd Head		
No	Weight	Au	Weight	Au1	Au2	Au
	(g)	(g/t)	(g)	(g/t)	(g/t)	(g/t)
OVERALL COMPOSITE	13.0	387	988.7	7.31	7.47	12.3

SCREEN FIRE ASSAYS - HEAD SAMPLES

SCREEN FIRE ASSAY DETAILS

Sample	+75	μm	-75 µm			Calc'd Head
No	Weight	Au	Weight	Au1	Au2	Au
	(g)	(g/t)	(g)	(g/t)	(g/t)	(g/t)
Q1	4.2	646	1008.9	7.90	7.90	10.5
Q2	2.2	1356	1036.1	7.15	8.07	10.4
Q3	4.9	348	981.2	4.27	4.13	5.92

APPENDIX II

Gravity Recoverable Gold (GRG) Testwork

Details and Results

SAMPLE IDENTITY : OVERALL COMPOSITE

GRAVITY RECOVERABLE GOLD [GRG] CONTENT DETERMINATION : OVERALL DISTRIBUTION

					GC	DLD	
Material	/ Stage	Wei	gnt	ASS	SAY	TOTAL	DISTI
		(g)	(%)		(g/t)	(µg)	(%)
Gravity concentra [Grade calculated from size by size	•	92.7	0.19		4441	411653	82.28
Gravity concentra Grade calculated from size by size	-	80.9	0.16		619	50086	10.01
Gravity concentra Grade calculated from size by size	-	94.2	0.19		13.7	1292	0.26
Gravity tailing - [Duplicate g		49732.2	99.46		0.75	37299	7.45
TOTAL	GRG						92.5
TOI	TAL	50000.0	100.00			500329	100.00
CALCULAT	ED HEAD			10.0			
ASSAY				12.3			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK	GRG TESTWORK FLOWS	<u>HEET : KNE</u>	<u>LSON ME</u>	<u>ETHOD</u>			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD		<u>HEET : KNE</u>	<u>ELSON ME</u>	<u>ETHOD</u>			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING		<u>LSON ME</u>	<u>ETHOD</u>			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm			THOD			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm			TAILING			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR			TAILING J GRIND TO P			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR CONCENTRATE ↓ SIZE BY SIZE GOLD			TAILING J GRIND TO P	280 : 75μm BRG TESTW	<u>ORK</u>	
1 x 50kg SAMPLE	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR CONCENTRATE ↓ SIZE BY SIZE GOLD			TAILING J GRIND TO P	BRG TESTWO	<u>ORK</u> TAILING	

SIZE BY SIZE GOLD ANALYSIS

SAMPLE IDENTITY : GRG STAGE 1 CONCENTRATE [TEST HS24945]

[OVERALL COMPOSITE]

Operation	Size	Weight	Weight	Weight	G	old
	(μm)	(g)	(%)	% <	g/t	Dist'n %
Screening	850	14.0	15.10	84.90	4120	14.01
g	600	6.5	7.01	77.89	7256	11.46
	450	5.6	6.04	71.84	8178	11.13
	300	7.9	8.52	63.32	6913	13.27
	212	9.5	10.25	53.07	5226	12.06
	150	7.6	8.20	44.88	5136	9.48
	106	13.7	14.78	30.10	3540	11.78
	75	11.0	11.87	18.23	3314	8.86
	53	8.5	9.17	9.06	2046	4.22
	38	5.3	5.72	3.34	1833	2.36
	25	1.7	1.83	1.51	1719	0.71
	-25	1.4	1.51		1956	0.67
Total		92.7				100.00
Calc'd Grade					4441	

SIZE BY SIZE GOLD ANALYSIS

SAMPLE IDENTITY : GRG STAGE 2 CONCENTRATE [TEST HS24946]

[OVERALL COMPOSITE]

Operation	Size	Weight	Weight	Weight	G	iold
	(μm)	(g)	(%)	% <	g/t	Dist'n %
Screening	850	0.0	0.00	100.00		
	600	0.0	0.00	100.00		
	450	0.0	0.00	100.00		
	300	6.8	8.41	91.59	475	6.45
	212	21.1	26.08	65.51	358	15.08
	150	15.2	18.79	46.72	456	13.84
	106	16.0	19.78	26.95	987	31.53
	75	7.4	9.15	17.80	1498	22.13
	53	4.0	4.94	12.86	1255	10.02
	38	4.2	5.19	7.66	58.2	0.49
	25	2.9	3.58	4.08	35.3	0.20
	-25	3.3	4.08		38.4	0.25
Total		80.9				100.00
Calc'd Grade					619	

SIZE BY SIZE GOLD ANALYSIS

SAMPLE IDENTITY : GRG STAGE 3 CONCENTRATE [TEST HS24947]

[OVERALL COMPOSITE]

Operation	Size	Weight	Weight	Weight	G	iold
	(μm)	(g)	(%)	% <	g/t	Dist'n %
Screening	850	0.0	0.00	100.00		
	600	0.0	0.00	100.00		
	450	0.0	0.00	100.00		
	300	0.0	0.00	100.00		
	212	0.0	0.00	100.00		
	150	0.0	0.00	100.00		
	106	6.3	6.69	93.31	11.2	5.46
	75	26.4	28.03	65.29	9.79	20.01
	53	34.2	36.31	28.98	6.62	17.53
	38	17.5	18.58	10.40	15.9	21.54
	25	5.7	6.05	4.35	30.2	13.33
	-25	4.1	4.35		69.7	22.13
Total		94.2				100.00
Calc'd Grade					13.7	

APPENDIX III

Direct Cyanidation Time Leach Testwork

Details and Results

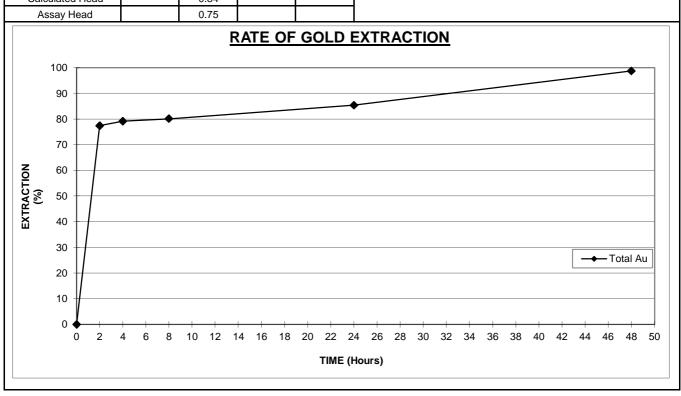
PROJECT	A13425 : MADAGASCAR GOLD PROJECT				
CLIENT	CLUFF RESOURCES LTD				
TEST No	HS24997				
SAMPLE	OVERALL COMPOSITE				
	KNELSON TAIL [EX GRG: HS24947]				
GRIND	P80 : 75 MICRONS [AS RECEIVED]				
WATER	PERTH TAP WATER				
DATE	APRIL 2011				

DIRECT CYANIDATION TIME LEACH TESTWORK : OXYGEN SPARGED

			ADDITIONS			SOLUTIO	ON DATA		EXTRACTION
TIME	∷ Solids∷	Water	NaCN	Lime	Oxygen	рН	:::NaCN ::	Au	Gold
(Hours)	(g)	(g)	(g)	(g)	(ppm)		(%)	(ppm)	(%)
	3000.0	4500.0			7.9	7.8			
0			4.50	1.22	22.3	10.5	0.100	0.000	0.00
2			0.00	0.00	33.8	10.1	0.083	0.435	77.45
4			0.00	0.00	33.4	10.2	0.073	0.445	79.23
8			0.00	0.00	33.9	10.4	0.070	0.450	80.12
24			0.00	0.00	32.7	10.5	0.055	0.480	85.46
48			0.00	0.00	33.4	10.6	0.035	0.555	98.81
TOTAL			4.50	1.22					

GOLD EXTRACTION CALCULATIONS

		GOLD					
Product	Quantity	Assay	Total	Dist'n			
		(ppm)	(µg)	(%)			
Solids (g)	3000.0	0.01	30	1.19			
Solution (mls)	4500.0	0.555	2498	98.81			
Total			2528	100.00			
Calculated Head		0.84					
Assav Head		0.75					


COMMENTS :

- 1. NaCN Addition : 1.50 (Kg/t)
- 2. NaCN Consumption : 0.94 (Kg/t)
- 3. Lime Consumption :
- 4. Perth Water Used :
 - ter Used : 1.000 (SG)
- 5. Grind Size P 80 :
- 6. Evaporation losses made up prior to sampling at each period.

0.41 (Kg/t)

75 (µm)

7. Leach test conducted in mechanically stirred, baffled agitation vat leach.

APPENDIX IV

Overall Distribution

Details and Results

SAMPLE IDENTITY : OVERALL COMPOSITE

GRAVITY RECOVERABLE GOLD [GRG] CONTENT DETERMINATION / DIRECT CYANIDATION ON TAILINGS

		Weight	Volume	GOLD			
Mate	rial / Stage			ASS	SAY	TOTAL	DIST
		(g)	(mL)	(g/t)	(mg/L)	(µg)	(%)
Gravity concer	ntrate : GRG Stage 1	92.7		4441		411681	81.5
[Grade calculated from size by	size gold assay on gravity concentrate]						
	ntrate : GRG Stage 2	80.9		619		50077	9.92
	size gold assay on gravity concentrate]						
	ntrate : GRG Stage 3	94.2		13.7		1291	0.26
	size gold assay on gravity concentrate]						
•	n Leach Residue	49732.2		0.01		497	0.10
	GRG Stage 3 Knelson Tailing]						
-	on Leach Liquor		74598.3		0.555	41402	8.20
	GRG Stage 3 Knelson Tailing] RECOVERY						99.9
	TOTAL	50000.0				504948	100.0
CALCU	LATED HEAD			10.1			
			•				
1 x 50kg SAMPLE GRIND TO P80 : 850µm 	<u>GRG TESTWORK FLOWS</u>	SHEET : KNE	<u>-LSON ME</u>	<u>= THOD</u>			
	GRG TESTWORK FLOWS	<u>SHEET : KNE</u>	<u>ELSON ME</u>	<u>= THOD</u>			
GRIND TO P80 : 850µm	GRG TESTWORK FLOWS	<u>SHEET : KNE</u>	<u>=LSON ME</u>	<u>= THOD</u>			
GRIND TO P80 : 850µm 		<u>SHEET : KNE</u>	<u>=LSON ME</u>	<u>= THOD</u>			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING		<u>=LSON ME</u>	<u>= THOD</u>			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm			<u>= IHOD</u>			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR			TAILING			
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm						
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR				80 : 75µm		
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR ↓ CONCENTRATE			TAILING GRIND TO P	·		
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR ↓ CONCENTRATE ↓ SIZE BY SIZE GOLD			TAILING	·	<u>PRK</u>	
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR ↓ CONCENTRATE ↓ SIZE BY SIZE GOLD			TAILING GRIND TO P	·	<u>DRK</u>	
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR ↓ CONCENTRATE ↓ SIZE BY SIZE GOLD			TAILING GRIND TO P	RG TESTWO	<u>RK</u> TAILING	
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR ↓ CONCENTRATE ↓ SIZE BY SIZE GOLD			TAILING GRIND TO PA	RG TESTWO		
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR ↓ CONCENTRATE ↓ SIZE BY SIZE GOLD			TAILING GRIND TO PA STAGE 3 : G CONCENTRA SIZE BY SIZE	RG TESTWO	TAILING CYANIDATIO	Ν
GRIND TO P80 : 850µm STAGE 1 : GRG TESTWORK CONCENTRATE SIZE BY SIZE GOLD	TAILING ↓ GRIND TO P80 : 212µm ↓ STAGE 2 : GRG TESTWOR ↓ CONCENTRATE ↓ SIZE BY SIZE GOLD			TAILING GRIND TO PA	RG TESTWO	TAILING	Ν