

Disclaimer

Whilst this document and presentation is based on the information from sources which are considered reliable, Hot Rock Limited, its directors, employees and consultants do not represent, warrant or guarantee, that the information in this document and presentation is complete or accurate.

To the maximum extent permitted by law, Hot Rock Limited disclaims any responsibility to inform any recipient of this document and presentation of any matter that subsequently comes to its notice, which may affect any of the information contained in this document and presentation.

The information in this Statement that relates to Geothermal Resources has been compiled by Peter Barnett, an employee of Hot Rock Limited. Mr Barnett has over 30 years' experience in the determination of crustal temperatures and stored heat for the style relevant to the style of geothermal play outlined in this release. He is a member of the Geothermal Resources Council and the International Geothermal Association, a current board member of the New Zealand Geothermal Association, a past board member of the Auckland University Geothermal Institute Board of Studies and a current member of the Economics Sub Committee of the Australian Geothermal Association. Mr Barnett qualifies as a Competent Person as defined by the Australian Code of Reporting of Exploration Results, Geothermal Resources and Geothermal Reserves (2010 2nd Edition). Mr Barnett consents to the public release of this report in the form and context in which it appears. Neither Mr Barnett nor Hot Rock Limited takes any responsibility for selective quotation of this Statement or if quotations are made out of context.

All amounts are in American Dollars (USD) unless otherwise stated.

Outline of Presentation

- 1. Executive Summary
- 2. Corporate and Management Overview
- 3. Geothermal Energy Background
- 4. Geothermal ASX Sector
- 5. Chile Opportunities and Projects
- 6. Peru Opportunities and Projects
- 7. Australian Projects
- 8. MW generation target
- 9. Milestones To June 2011
- 10. Investment Highlights

Executive Summary

- Hot Rock is a pure, geothermal energy company on the path to becoming a clean energy generator in the Southern Hemisphere with potential of 3000MW of generation within its portfolio, sufficient to provide electricity to about 3 million homes.
- It is focused on developing conventional commercially proven Volcanic and Hot Sedimentary Aquifer (HSA) projects in countries that support renewable energy with growing power demand.
- Strong management team with proven track record in exploring and developing projects.
- Large geographically diversified portfolio of projects increasing project success rate.
- 100% ownership of projects allows HRL to farm-out projects to partners.
- Plan to fast-track development timetable commencing drilling in early 2012, feasibility studies in mid 2012 and plant developments from 2014 onwards.

Corporate Overview as at 30 August 2011

ASX Code: HRL

Share price: 3.7 cents

Shares on issue (million): 156.3

Unlisted options (million): 28

Market Cap: A\$5.8 m

Cash position: A\$0.6 m

• Shareholders: 1,127

Top 20 Shareholders: 50%

Board and management: 17%

Top 10 Shareholders

1	LORRAINE JEAN ZILLMAN	10,500,000	6.72%
2	ELLIOTT NOMINEES P/L	8,500,000	5.44%
3	ABN AMRO CLEARING SYDNEY NOMINEES	7,307,981	4.68%
4	HSBC CUSTODY NOMINEES	5,187,684	3.32%
5	MR IAN LINDSAY CAMPBELL	5,000,000	3.20%
6	BIZZELL NOMINEES PTY LTD	4,200,000	2.69%
7	DR & MRS BARKER	4,100,000	2.62%
8	PETER RODNEY BARNETT	3,400,000	2.17%
9	ALBIANO HOLDINGS PTY LTD	3,224,394	2.06%
10	BCP ALPHA INVESTMENTS PTY LTD	2,800,000	1.79%

12 Month Share Price History

Management & Board

Proven team of resource project developers

Dr Mark Elliott Executive ChairmanEconomic geologist & director with over 33 years experience.

Experience in corporate management and resource industry.

Peter Barnett Managing Director

Former geothermal manager of Sinclair Knight Merz. 35 years experience working in geothermal exploration, development and production operations of 40% of world's geothermal generation capacity across 24 countries.

Luis Urzua Geothermal Resource Mgr Geologist and Civil Engineer with 10 years experience in the geothermal industry.

Developed 20 wells and over 380MW of geothermal generation capacity.

Mike Sandy Non-exec Director

Petroleum geologist & director with over 32 years experience in building companies and energy production.

Paul Marshall Co. Sec & CFO Qualified accountant and lawyer.

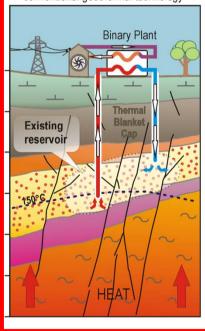
15 years experience in listed resource companies.

Stephen Bizzell Non-exec Director

15 years experience in corporate finance, the energy industry and capital markets. Previously executive director of Arrow Energy and Chairman of a boutique investment banking firm and funds management group.

HRL Strategy & Objectives

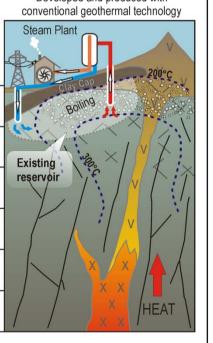
- HRL is focused on exploring and developing commercially proven Volcanic and Hot Sedimentary Aquifer (HSA) style projects in high power demand countries to become a large producer of geothermal power
- To grow the value of our clean energy business through development of our large portfolio of projects in key growth regions.
- Using early mover advantage to secure 100% interest in high quality geothermal projects for development in Chile, Peru and Australia.
- Secure project funding from partners to fast track drilling and feasibility studies to lead to development of profitable operations.


Geothermal Models: HRL focussed on conventional projects

Hot Fractured Rock (HFR) Very limited natural permeability, needs to be enhanced - "EGS" Requires highly specialised technology Binary Plant Depth Thermal Blanket 2-Man-made "enhanced" reservoir

HRL Australia

HRL Chile & Peru

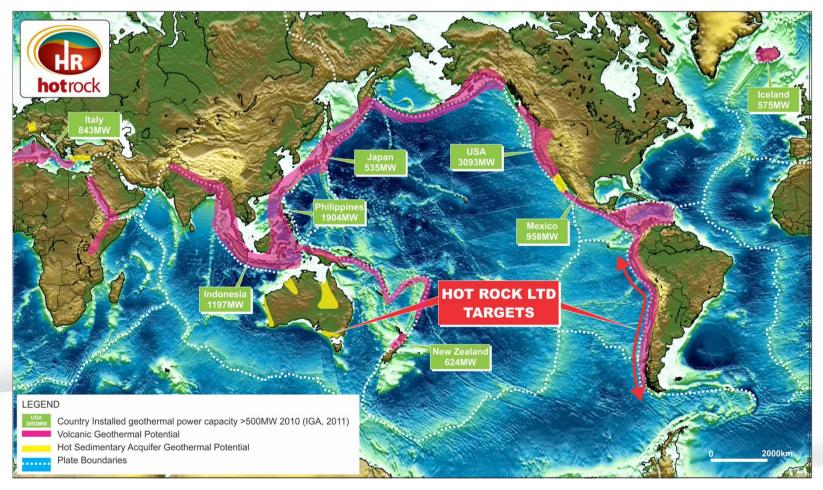

Hot Sedimentary Aquifer (HSA)
High levels of natural permeability
from both porosity (1°) and fractures (2°)
Developed and produced with
conventional geothermal technology

Volcanic Geothermal High levels of natural permeability

High levels of natural permeability from predominantly fractures (2°)

Developed and produced with conventional geothermal technology

No commercial operations


Operating for over 25 years in USA

Operating for nearly 100yrs 96% of installed generation capacity

Geothermal target areas and major generation locations

- High potential in unexplored volcanic targets of the "Rim of Fire" in Chile and Peru.
- Conventional HSA targets near markets and transmission grid in Australia.

Benefits of geothermal energy

Clean

Minimal land use, low to nil CO₂.

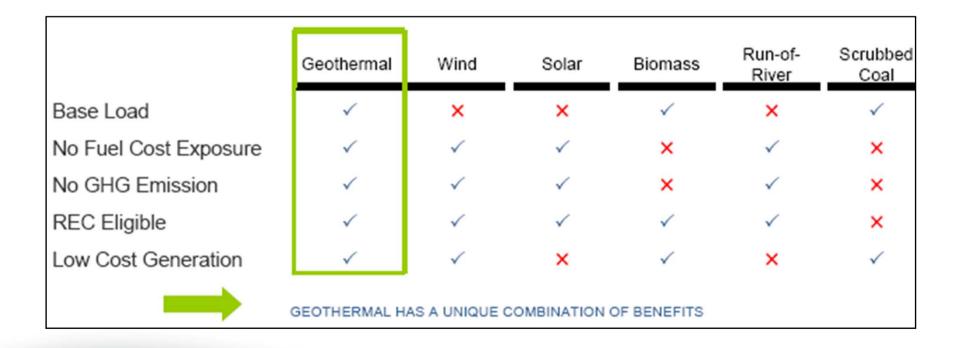
Sustainable

Derived from near infinite earth heat.

Free Fuel

Independent of commodity prices and risks.

Base Load


- 24/7 operation and with high fuel and plant availability >90%, vs. 30% wind, 45% solar 50% run of river hydro.
- Low operating cost after initial capital cost.
- 30 year LCOE¹ shows geothermal is distinctly advantageous relative to other clean energies.

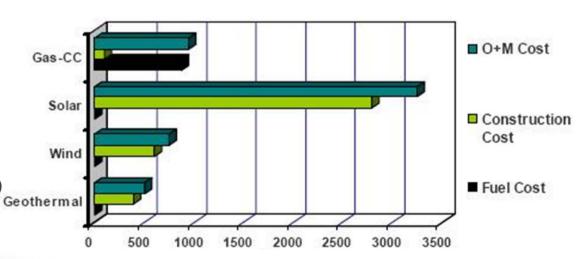
¹LCOE: Levelised Cost of Electricity

Benefits of geothermal energy

 Geothermal is the only clean base-load energy that can replace fossil fuel power generation

LCOE analysis shows geothermal is the cheapest source of large scale clean energy

Cost comparisons:


30 year life for
 23,652GWh power plant
 (Source: RBC Capital Markets)

	Geothermal	Wind	Solar	Gas-CC
Plant Size (MW)	100	300	360	106
Construction Cost (\$M)	\$400	\$800	\$2,800	\$101
Capacity Factor	90%	30%	25%	85%
MWh generated – 30 yrs	23,652,000	23,852,000	23,652,000	23,652,000
Fuel Cost: 30 yrs (\$M)	\$0	\$0	\$0	\$745
O&M Costs: 30 yrs (\$M)	\$108	\$135	\$371	\$106
All-in-costs: 30 yr plant life	\$508	\$735	\$3,251	\$951

Power Plant All-in cost comparison:

- 30 year plant life
- Assuming capacity gap filled by increasing plant size (Source: RBC Capital Markets)

(LCOE = Levelised cost of electricity)

Costs in USD

HRL is an undervalued growth company

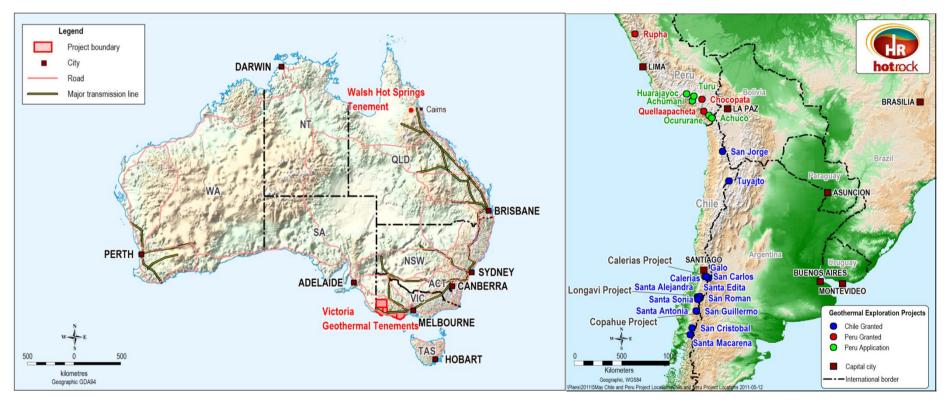
Geothermal Stocks	ASX Code	Market Cap \$m	Project Focus	Location Focus	Volcanic Resources	Volcanic Projects
Geodynamics	GDY	84.3	EGS	Australia		
			HSA	Australia		
Earth Heat Resources	EHR	18.8	Volcanic	Argentina	30MWe ^{1,4}	1
			Volcanic	Djibouti	150MWe ^{1,4}	1
			EGS	Australia		
Petratherm	PTR	15.2	EGS	Australia		
			HSA	Australia		
			EGS	Spain		
			Volcanic	Spain	-	1
Green Rock Energy	GRK	10.8	EGS	Australia		
			HSA	Australia		
Panax Geothermal	PAX	8.5	Volcanic	Indonesia	165MWe ^{1,4}	3
			HSA	Australia		
Greenearth Energy	GER	6.7	EGS	Australia		
			HSA	Australia		
Hot Rock	HRL	5.8	Volcanic	Chile	320MWe ^{2,3}	7
			Volcanic	Peru		3
			HSA	Australia		
Geothermal Resources	GHT	5.4	EGS	Australia		
			HSA	Australia		
KUTh Energy	KEN	4.4	EGS	Australia		
			Volcanic	Vanuatu	83MWe ³	1
Torrens Energy	TEY	3.5	EGS	Australia		

Source: Company websites and ASX releases

4. Non Code compliant assessment

Note: Table as at 30 August 2011

¹. Earning interest in projects via funded exploration & development programs.


³. Code compliant assessment (Australian Geothermal Reporting Code, 2010, 2nd Edition)

^{2.} Resources from 2 Chile projects

HRL Projects

Australia

South America

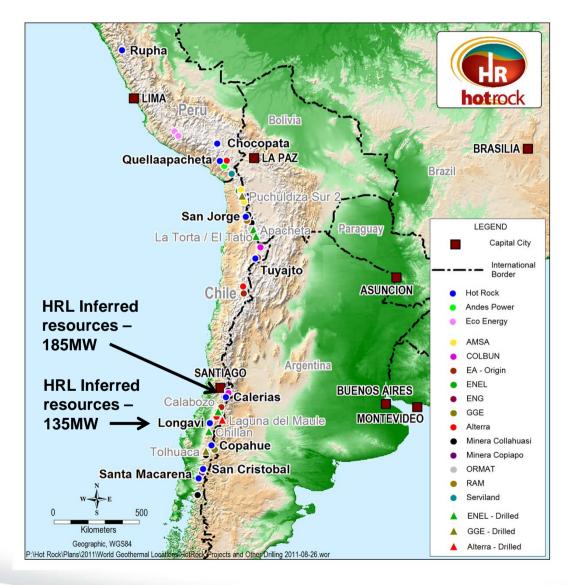
Medium temperature (130 to 180°C)

HSA Targets

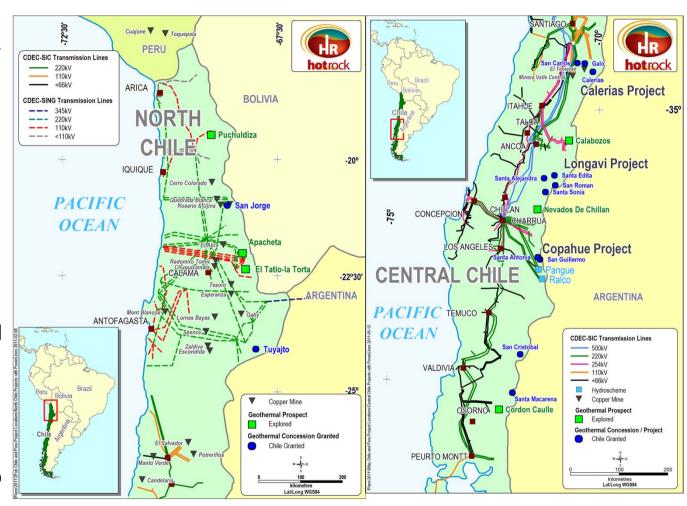
High temperature (180 to 350°C) *Volcanic targets*

Chile – Impressive world class geothermal potential

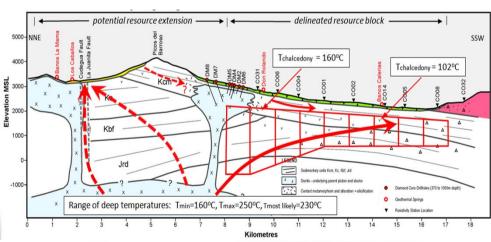
- GDP real growth for 2011¹: 5.3%est.
- Emerging renewable power markets with world class potential.
- Potential for geothermal power development is large: 3,000 to 16,000MW.
- 15,000MW of new generation required over the next 15 years.
- Stable investment environment with a low political and investment risk².
- Low tax rate: 17%.
- Strong government support via grants and geothermal drilling failure insurance.

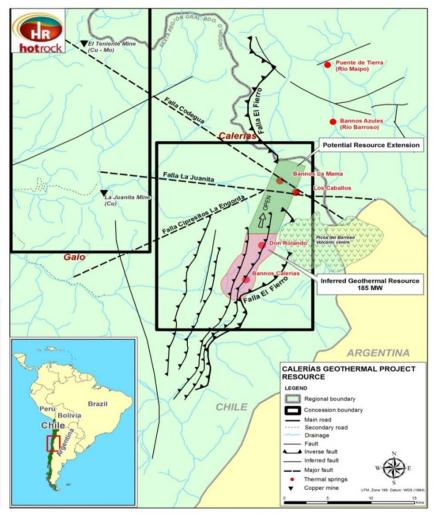

¹www.indexmundi.com ²www.ondd.be

Chile – New discoveries in Chile


- First geothermal power generation in Chile scheduled for 2014.
- Growing industry with 3 groups recently announcing discoveries via drilling and proceeding with power developments.
 - Apacheta ENEL/ENAP/Codelco.
 - Laguna del Maule Alterra Power.
 - Tolhuaca GeoGlobal Energy/ Mighty River Power.
- Major geothermal pegging rush in Chile by large companies.
 - Ormat Market leader, manufacturing 89% of global geothermal binary plant installations + own and operate 553MWe of geothermal generation capacity.
 - EDC World's largest geothermal generation company based in Philippines.
 - Origin Energy Purchased 40% of major Chilean exploration geothermal company in May 2011.

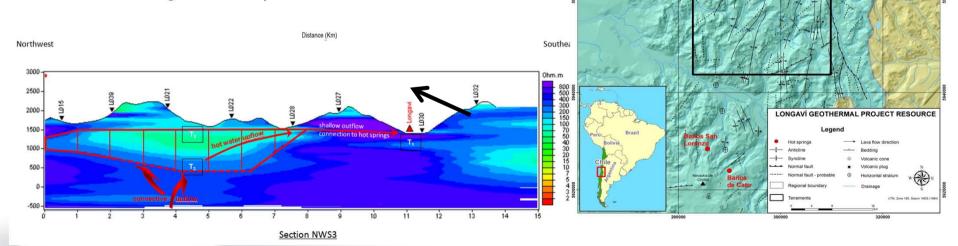
Chile –HRL projects close to major power markets & grid


- Chile is the world's largest copper producer with high demand for power.
- Highest power costs in South America
 \$100/MWh.
- Power shortages due to increasing demand and drought.
- Large opportunities for both on-grid and off-grid power sales.
- HRL has large portfolio
 13 granted tenements covering 5,660km².
- HRL tenements close to grid and markets.



Chile – Calerias Project (100%HRL)

- 9 groups of hot springs with discharge temperatures up to 75°C.
- Excellent geothermal development potential.
- Grid and power market present
 - e.g. El Teniente Cu plant 35kms NW, Santiago 100kms N
- Inferred geothermal resource of 185MWe
- Potential to double this with further



NNE Cross-section showing resource model

Chile - Longavi Project (100%HRL)

- Extensive hot springs and sinter deposits with surface discharge temperatures up to 81°C present.
- Excellent geothermal development potential.
- Grid and power market present.
- Inferred geothermal resource 135MWe
- Potential to increase this with further MT surveys to allow for greater depth delineation to resource

HR

hotrock

NW cross

section

SANTA ALEJANDRA

SANTA SONIA

Peru – Impressive world class geothermal potential

- GDP real growth for 2011¹: 7.8%est.
- Power generation capacity set to double to 14,000MW over the next 6 years.
- Legislated support for renewable power e.g.
 Renewable energy Law 1002 (May 2008)
 - Priority connection to grids.
 - 20 year "take or pay" contracts are awarded from bidding against other renewable projects (e.g. recent 80MW PV Solar project awarded 20yr contract a US\$224/MWh).
 - Tax benefits.
- Large, rapidly growing, power intensive mining industry.
- 3 geothermal tenements granted in early 2011.
- 5 further volcanic tenement applications being processed.

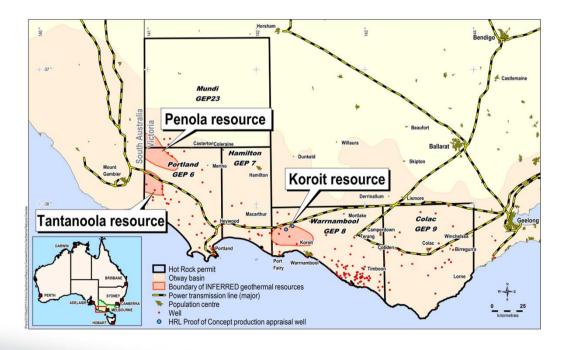
Colombia Copper mine HRL Geothermal Project Granted Ecuador HRL Geothermal Project Application Peru Brazil Chiclayo

Peru Projects - Great Potential

- Most Peru prospects have surface features indicating presence of classic high temperature volcanic geothermal systems.
 - e.g. extensive surface geothermal features such as hot springs and sinters indicating subsurface reservoir temperatures >230°C at Quellaapacheta.

- Highly prospective projects for development.
- Nearby transmission lines and markets.

Hot spring sampling at Quellaapacheta provides subsurface reservoir temperature of >230°C

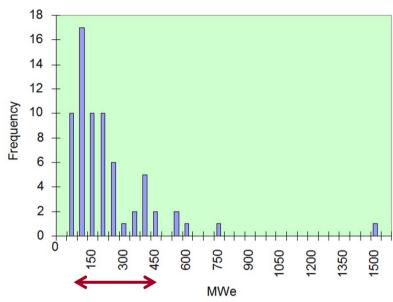

High flow rate artesian hot springs provide evidence of a potentially significant resource at depth within Quellaapacheta project 21

HRL holds large HSA resources in Australia

- Extensive fractured sandstone HSA reservoirs in five large tenements.
- Direct temperature measurements from previous wells in the Koroit and Penola reservoirs
- Large in-situ geothermal energy resources assessed at 180,000PJ.
- Sufficient recoverable energy for the generation of 1,300MWe electricity (sufficient to supply 1.3m homes). Based on 5% recoverable energy.
- Ready to drill and test two deep exploration wells at Koroit HSA resource to prove potential generation capacity.

HRL HSA geothermal resource assessments

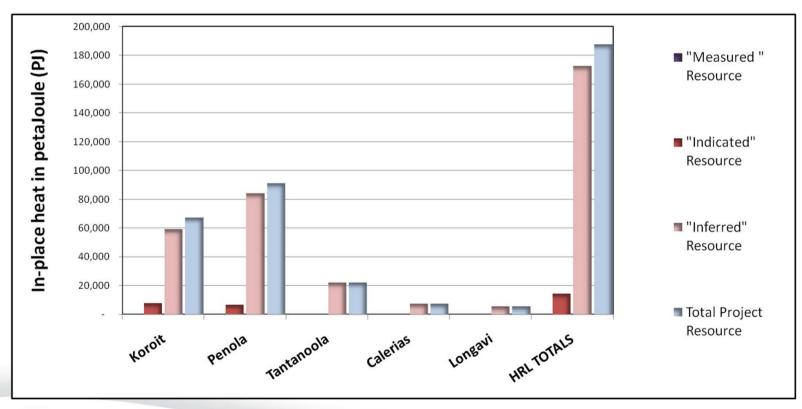
Name	Area km²	Volume km³	Indicated PJ	Inferred PJ	Total PJ
Koroit	450	387	7,600	59000	66,300
Penola	440	490	6,700	84,000	90,700
Tantanoola	180	130		22,000	22,000
Total	1,070	1,010	14,300	165,00	180,000



Power Generation Target – 3000MW

- Geothermal power development targets are based on:
 - considerations of proven sizes of developed geothermal fields worldwide; and
 - assumed 66% success rate for power developments from HRL's portfolio of quality exploration prospects i.e. 2 out of 3 exploration prospect expected to be developed.

Country	No. of HRL Projects	Target size (MW) per project	Total (MWe) Target
Chile	7	100 to 200	1000
Peru	8	100 to 200	1000
Australia	3	100 to 500	1000
Total	18		3000


Histogram of estimated power producing capacity of the world's developed high temperature geothermal fields (78)

Notes:

- 1. Largest developed fields in the world are in the USA at the Geysers (750MW "dry" steam) and in the Philippines at Leyte (720 MW "wet" steam).
- 2. Typical sized field in Volcanic terrains is approximately 200MW.
- 3. Typical sized fields in Hot Sedimentary Aquifer (HSA) terrain in the Salton Sea area (USA) are up to 100MW and undergoing expansion.

Total Resource Potential Identified todate – Chile + Australia

Resource Area	Resource Volume			Total Project Resource	Report Date	
1,090	1,050	1	14,300	172,400	187,400	25-Jul-11

Milestones- To June 2012

		2011				2012					
Location	Project	September	October	November	December	January	February	March	April	May	June
Chile	Calerias	Farm-o	ut/JV		MT ²			Drilling			
	Longavi	Farm-out/JV MT ² Community & land access Field expl				Drilling					
	Santa Macarena			MT	Resources						
	Tuyajto		Community & land access			Field expl	MT	Resou	urces		
	Copahue	Community & land access									
	San Cristobal		Community & land access								
	San Jorge				Community 8	land acces	S				
Peru	Quellaapacheta	Land access	Field expl					MT	Reso	urces	
	Chocopata	Community &	land access	Field expl					MT	Reso	urces
	Rupha		Community & land access								
Australia	Koroit	Discussions with govt & JV partner funding						Dril	ling		
	Otway Basin	Discussio	ns with govt	& JV partner	funding						
	Walsh Springs		Field exp	oloration							

Notes:

- 1. Future programs will depend on exploration success and access to capital via equity and partners
- 2. MT = first stage Magneto Telluric (MT) geophysical survey with large areal coverage. MT = second stage, smaller, closely spaced MT survey for confirming locations of exploration drill sites
- 3. "Resources" = resource modeling and assessment
- 4. All projects 100% HRL owned

Investment Highlights

- HRL is the largest holder of granted volcanic geothermal projects in Chile and Peru, now exploring and estimating resources for testing and development.
- All tenements are 100% owned providing the opportunity for favourable farm-out terms to fund future exploration and development costs to fast track projects.
- High growth potential targeting 3,000MW in Chile, Peru and Australian tenements.
- Highly experienced technical and commercial team with proven track record to complete programs.
- Fast-track exploration and development with farm-in partners.
- Undervalued growth company.

