

ASX Announcement

OUTSTANDING RESULTS HIGHLIGHT POTENTIAL OF JUBILEE REEF GOLD JOINT VENTURE IN TANZANIA

Broad widths of mineralisation intersected with best hit of 8m @ 7.45g/t gold

Highlights

Best RC Intersections from maiden drilling program

>	JBRRC018	28m @ 3.02g/t gold from 40m, including 8m @ 7.45g/t gold from 56m
>	JBRRC019	40m @ 1.19g/t gold from 8m
>	JBRRC024	28m @ 2.8g/t gold from 72m, including 8m @ 5.1g/t gold from 72m
>	JBRRC025	12m @ 2.3g/t gold from 40m
RAB In	tersections	
>	JLRB488	22m @ 1.3g/t gold from 8 - 30m (EOH), including 12m @ 2.21/t gold from 8m
>	JLRB498	29m @ 0.75g/t gold from 8 - 37m (EOH)
>	JLRB499	33m @ 0.62g/t gold from 4 - 37m (EOH), including 8m @ 1.74g/t gold from 8m
>	JLRB523	15m @ 0.75/t gold from 24 - 39m (EOH), including 8m @ 1.1g/t gold from 28m
>	JLRB528	16m @ 0.70g/t gold from 16 - 32m (EOH), including 4m @ 1.2g/t gold from 28m (EOH)

(NB: all assays reported are 4metre composite samples)

Liontown Resources Limited (ASX: LTR) is pleased to report that results from the Company's maiden drilling program at its Jubilee Reef JV in Tanzania, East Africa (*see Figure 1*) indicate potential for the Project to host large-scale gold deposits with significant widths and grades of mineralisation intersected.

A program comprising approximately 4,000m RC and RAB drilling was undertaken at three gold prospects (*see Figure 2*) and was designed to test beneath and along strike of previously reported shallow gold intersections (see ASX announcements dated 25th January and 27th January 2011).

Better intersections are listed above and results for all holes for which assays have been received are appended. Assay results are still pending for one RC hole drilled into the Shangaza/Panapendesa gold target and for 12 RC holes drilled into iron targets located in the eastern part of the Project area.

Holes JBRRC018 and JBRRC019 were drilled at the Masabi Hill prospect (*see Figure 3*) and confirm the down dip extension of extensive gold mineralisation intersected in previous shallow RAB holes (*see Figures 4 and 5*). The mineralisation remains open along strike to the east and at depth.

Holes JBRRC024 and JBRRC025 were drilled at the Shangaza/Panapendesa prospect (*see Figures 2 and 6*). JBRRC024 was drilled approximately 50m down dip of a previous intersection of 19m at 3.6g/t gold reported at the bottom of a RAB hole JLRB126 (*see Figure 7*) while JBRRC025 was drilled approximately 100m along strike to the north-east. The mineralisation remains open along strike to the east and at depth.

The RAB drilling was undertaken at the Masabi Hill prospect (*see Figure 3*) to test for extensions of a large, 150x500m, east-west trending gold geochemical anomaly which had been partially defined by previous soil sampling and RAB drilling.

The gold mineralisation at Masabi Hill is hosted by a strongly altered granitic intrusion and the recent RAB drilling program was also designed to intersect the previously untested contact with the adjacent greenstone lithologies.

Results from the RAB drilling confirm that strong gold anomalism (>0.1g/t) extend eastwards beneath shallow transported cover for at least another 350m from the previously defined mineralised zone. The latest results are of similar magnitude as that recorded by previous RAB drilling up dip of the intersections in JBRRC018 and JBRRC019 referred to above (see Figures 4 and 5).

Significantly the results in JLRB483, JLRB0498 and JLRB499 (see Figure 3) confirm the potential of granite contact zone to host economic gold mineralisation. The granite contact, which geophysics indicates is at least 3km long on the JV area, is completely covered by shallow transported soil and has only been intersected by the single RAB traverse drilled by Liontown.

Commenting on the results, Liontown's Managing Director, Mr David Richards, said "These are very exciting results for a maiden drilling program and highlight the potential for a major gold system, particularly at Masabi Hill. More RAB drilling is needed to define the extent of the gold anomalism at Masabi Hill as well as diamond core drilling to get a better handle on what is controlling mineralisation. We will then need an RC rig to work out the real size of the system. This work will start as soon as all assay results are received (including 1m splits of composite samples) and suitable drill rigs can be secured."

Liontown entered into the Jubilee Reef JV Project with Canadian company Currie Rose Resources Ltd (TSX.V: CUI) at the beginning of 2011. Liontown has the right to earn up to 75% equity in the Project which is located in the Lake Victoria Goldfield (*see Figure 1*), an Archaean greenstone-granite terrain similar to the Eastern Goldfields of W.A.

Several multi-million ounce gold deposits are currently being mined in the region including Bulyanhulu and Geita.

About Liontown

Liontown is exploring for standalone mineral deposits in northern Queensland and northern Tanzania, East Africa. In Australia, the Company's strategy is to acquire and explore 100%-owned, early-stage projects in under-explored but well endowed mineral provinces. Overseas, where acquisition costs are higher, Liontown's preference is to enter into joint ventures where drill targets have already been defined. The Company continues to actively assess other opportunities in Australia and overseas.

DAVID RICHARDS Managing Director 10 October 2011

The information in this report that relates to Exploration Results is based on information compiled by Mr David Richards, a full time employee of Liontown Resources Limited, who is a Member of the Australian Institute of Geoscientists. Mr Richards has sufficient experience in the field of activity being reported to qualify as a Competent Person as defined in the 2004 edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves, and consents to the release of information in the form and context in which it appears here.

For further information, please contact:

Mr Tim Goyder, Executive Chairman or David Richards, Managing Director Liontown Resources Limited - Telephone +618 9322 7431

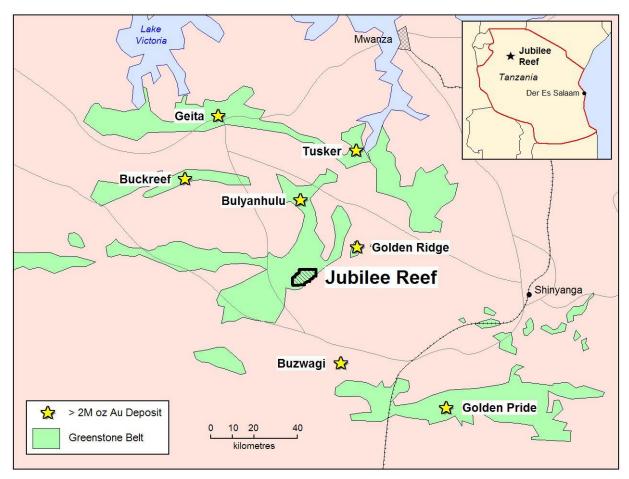
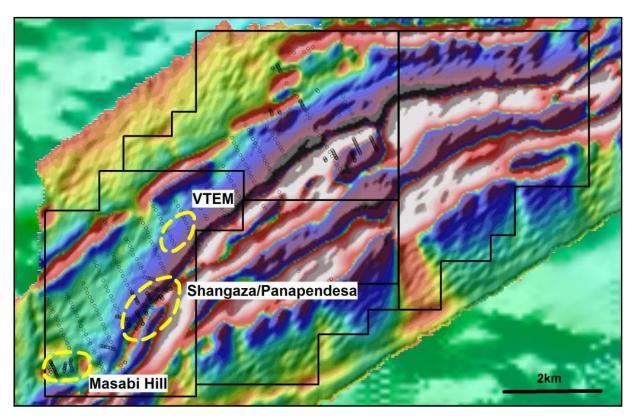



Figure 1: Regional Geological Setting of Jubilee Reef Joint Venture Project in Northern Tanzania

 $Figure\ 2:\ Jubilee\ Reef\ Joint\ Venture\ Project-Magnetic\ image\ showing\ gold\ targets\ tested\ by\ drilling\ program$

Figure 3: Masabi Hill Prospect - Magnetic image showing recent drilling and anomalous gold results

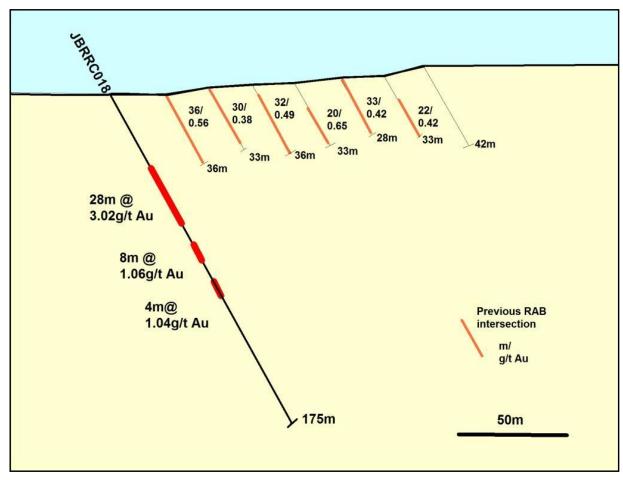
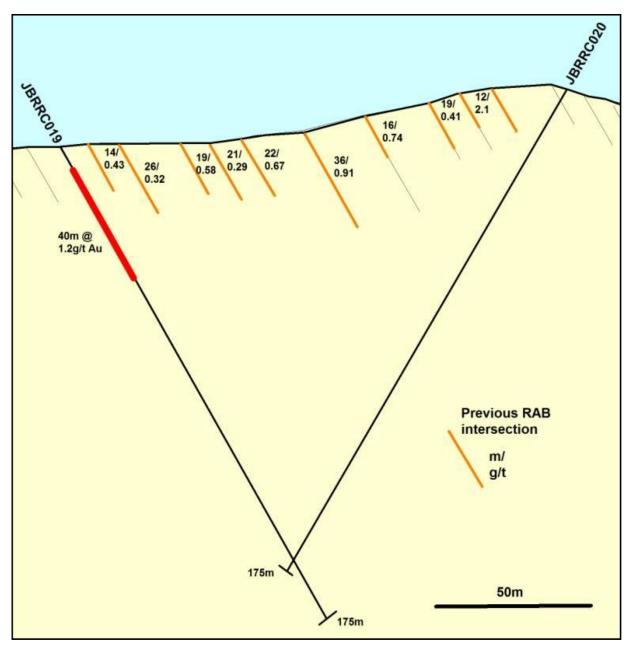



Figure 4: Masabi Hill Prospect - Drill section showing RC hole JBRRC018

 $Figure \ 5: Masabi \ Hill \ Prospect-Drill \ section \ showing \ RC \ hole \ JBRRC018$

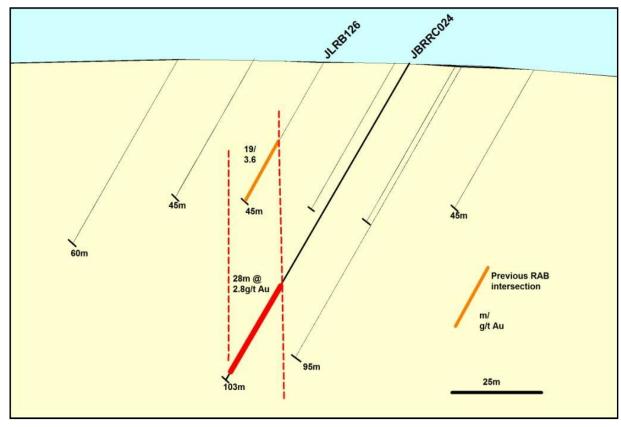



Figure 6: Shangaza-Panapendesa Prospect – Magnetic image showing recently completed drilling

Figure~7: Shangaza-Panapendesa~Prospect-Drill~section~showing~RC~hole~JBRRC024

Appendix 1: RC Drilling - Significant (>0.5g/t) Gold Results

Hole ID	Prospect	East	North	RL	Dip	Azimuth	Depth	Significant (>0.5g/t) Gold Intersections*						
TIOIE ID							թեհա	From (m)	To (m)	Interval(m)	Grade (g/t			
JBRRC018			T					4	8	4	0.99			
								16	28	12	0.86			
								40	68	28	3.02			
	MASABI		16254			335	175	including 8m@7.45g/t Au from 56m						
		9042		1244	-60			72	76	4	0.76			
								80	88	8	1.06			
								100	104	4	1.04			
								136	144	8	0.89			
								152	156	4	0.62			
								164	168	4	1.05			
		9136	16272	1245	-60	335	175	0	4	4	0.53			
JBRRC019	MASABI							8	48	40	1.19			
פוטטוווטטו	INITOUDI							60	64	4	0.62			
								96	100	4	0.79			
		9064	16418		-60	155	175	40	44	4	0.79			
JBRRC020	MASABI							80	84	4	0.96			
3DIXIX0020	WASADI							128	132	4	2.6			
								148	156	8	0.86			
JBRRC021	SH_PN	10963	17520	1294	-60	155	121	All<0.5g/t Au						
JBRRC022	SH_PN	11075	17750	1294	-60	155	157		All<0.5g/t Au					
JBRRC023	SH_PN	11015	17434	1308	-60	155	101		All<0.5g/t Au					
	SH_PN	11282	17813	1326	-60	155	103	72	100	28	2.8			
JBRRC024														
								and 8m @ 3.8g/t Au from 92m						
JBRRC025	SH_PN	11351	17848	1349	-60	155	110		52	12	2.3			
JBRRC026	SH_PN	10854	17404	1287	-60	155	103	Hole abandoned - redrilled as JBRRC040						
JBRRC027	VTEM	11581	19141	1296	-60	315	151		All<().5g/t Au				
JBRRC028	IRON	16330	11316	1464	-60	150	49							
JBRRC029	IRON	16367	11223	1460	-60	150	43							
JBRRC030	IRON	19496	10965	1435	-60	180	121							
JBRRC031	IRON	19503	11028	1450	-60	180	73		Iron ore targets - assays pending					
JBRRC032	IRON	19501	11068	1453	-60	180	31							
JBRRC033	IRON	19501	11152	1464	-60	180	43	Iron						
JBRRC034	IRON	19501	11128	1466	-60	180	31	non ore targets assays penaling						
JBRRC035	IRON	19501	11115	1456	-60	180	33							
JBRRC036	IRON	19501	11098	1456	-60	180	31							
JBRRC037	IRON	19501	11084	1464	-60	180	14							
JBRRC038	IRON	19501	11077	1455	-60	180	24							
JBRRC039	IRON	16442	11042	1422	-60	150	175							
JBRRC040	SH_PN	10850	17396	1307	-60		175		Assay	s pending				
* All assays from 4m composite sampling of 1m intervals														

Appendix 2: RAB Drilling - Significant (>0.1g/t) Gold Results

Hole ID	Prospect	East	North	RL	Dip	Azimuth	Depth	Significant (>0.1g/t) Gold Intersections*				E.O.H	
LIOIE ID	Tospect							From (m)	To (m)	Interval(m)	Grade (g/t)	L.O.11	
JLRB483	MASABI	9599	16100	1240	-60	360	39	16	39	23	0.42	✓	
								inclu	ding 3m @	21.25g/t Au a	at E.o.H		
	MASABI	9599	16121	1240	-60	360	39						
	MASABI	9601	16141	1241	-60	360	39	All <0.1g/t					
	MASABI	9601	16162	1241	-60	360	40						
JLRB487	MASABI	9601	16181	1235	-60	360	34	i i i i i i i i i i i i i i i i i i i					
JLRB488	MASABI	9600	16200	1237	-60	360	30	8 30 22 1.3 \(\sqrt{1} \) including 12m @2.21g/t Au from 8m					
JLRB489	MASABI	9600	16221	1236	-60	360	37	4	20	16	0.16		
	MASABI	9600	16241	1246	-60	360	40	4	40	36	0.10	√	
	MASABI	9600	16261	1237	-60	360	21	16	20	4	0.12		
	MASABI	9600	16281	1239	-60	360	18		16	12	0.12		
	MASABI	9280	15947	1239	-60	335	40		10	12	0.49		
	MASABI	9273	15947	1252	-60	335	40			All <0.1g/			
		9260		1238	-60	335	40			All <0.1g/			
	MASABI MASABI	9252	15987 16001	1250	-60	335	37	4	32	28	0.34		
JLRB490 JLRB497		9232		1251	-60	335	40		36	24	0.34		
JLKD497	MASABI	9242	16020	1230	-60	333	40	8	37	29	0.22	√	
JLRB498	MASABI	9234	16040	1251	-60	335	37			@ 1.6g/t fro		•	
JLND490	IVIASABI	9234	10040	1251	-60	335	37						
								4		5g/t Au from		√	
JLRB499	MASABI	9227	16053	1253	-60	335	38		37	33	0.62	· ·	
II DDEOO	MACADI	0000	40070	1015		225	25			1.74g/t Au 1			
	MASABI	9220	16072	1245	-60	335	35	8	16				
	MASABI	9212	16092	1235	-60	335	37	8	16				
	MASABI	9199	6108	1249	-60	335	28	8	16	8	0.1		
	MASABI	9191	16128	1245	-60	335	22	-					
	MASABI	9181	16147	1248	-60	335	28						
	MASABI	9172	16170	1247	-60	335	40			All <0.1g/			
	MASABI	9850	16351	1234	-60	270	32						
	MASABI	9831	16350	1241	-60	270	22	00		10	0.04		
	MASABI	9811	16351	1240	-60	270	39		32				
	MASABI	9789	16350	1241	-60	270	39	24	28				
	MASABI	9765	16349	1237	-60	270	36		36			✓	
	MASABI	9741	16349	1240	-60	270	40		40	All <0.1g/			
	MASABI	9720	16350	1242	-60	270	40		40			✓	
	MASABI	9699	16350	1236	-60	270	40		24	4	0.37		
	MASABI	9679	16350	1237	-60	270	40			All <0.1g/1	t		
	MASABI	9661	16351	1231	-60	270	39	00	40	10	0.04	,	
	MASABI	9641	16351	1241	-60	270	40		40		1	<u>√</u>	
	MASABI	9620	16351	1239	-60	270	34		34			<u>√</u>	
	MASABI	9600	16350	1237	-60	270	40		40			✓	
JLRB519		9599	16300	1243	-60	360	40		32				
JLRB520		9599	16319	1235	-60		33		32				
	MASABI	9600	16339	1238	-60	360	31		31			✓	
JLRB522	MASABI	9600	16361	1258	-60	360	40		40			✓	
JLRB523	MASABI	9601	16379	1238	-60	360	39	24	39			✓	
								inciud	_	1.1g/t Au fr			
JLRB524		9601	16400	1234	-60	360	37	24	28				
JLRB525		9600	16419	1242	-60	360	27	12	27			<u>√</u>	
JLRB526		9601	16441	1235	-60	360	40		40			√	
JLRB527	MASABI	9601	16459	1236	-60	360	35	1	35			✓	
JLRB528	MASABI	9601	16480	1237	-60	360	32	16	32		_	✓	
								including 4m @1.2g/t Au at E.o.H					
JLRB529		9601	16501	1239	-60	360	30	16	30	14	0.45	✓	
* All assays from 4m composite sampling of 1m intervals													