

Avocet

ASX Release

10th September 2012

Final Results from Drilling Programmes Olary Creek Iron Ore Project, South Australia

Highlights

- Final results from the drilling programmes on Olary Creek Iron Ore Project have returned significant mineralised intersections.
- Results further highlight the extent of iron rich sediments.
- Joint Venture partners to proceed to resource estimation and feasibility study.
- Results highlight significant iron grades with low impurities.

Significant results reported here include:

Hole ID	Interval		Fe	SiO₂	S	Р
ZK1812	199.95m	@	69.0 %	3.80%	.004%	.006%
ZK2013	108.00m	@	69.4 %	3.26%	.001%	.004%
and	94.00m	@	69.8 %	2.92%	.003%	.006%
ZK0408	149.70m	@	69.8 %	2.90%	.003%	.004%
OL0010	111 .00 m	@	69.1 %	3.47%	.004%	.006%
ZK2606	86m	@	69.64%	2.82%	.003%	.006%
ZK2608	81m	@	69.97%	2.72%	.003%	.005%
OL0017	113m	@	69.03%	3.73%	.006%	.008%

Olary Creek Update

The Directors of Avocet Resources Limited are pleased to announce the final assay results from the two drilling programmes which were completed on Olary Creek in South Australia.

Avocet Resources has received these results from its joint venture partner, "HJH Nominees" and its partner, "YMRD – Centres Alliance Co WA Pty Ltd". YMRD has been the manager of the recent drilling programmes.

The Olary Creek Project consists of one exploration licence (EL4664) and is located 70 kilometres southwest from Broken Hill with ready access to roads, rail and port facilities. The project is situated a short distance south of the Barrier Highway and the Indian Pacific railway line (Figure 1).

55 diamond and reverse circulation drill holes were completed for a total of 16,241.30 metres between July 2011 and June 2012. The drilling targeted the depth extent of mineralised siltstone outcrops on the surface.

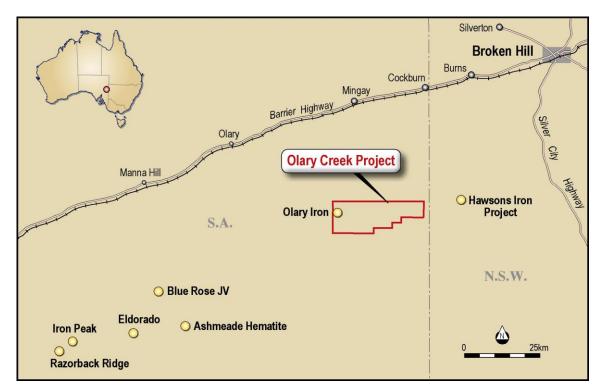


Figure 1: Location of the Olary Project

Figure 2 highlights all holes drilled in the two programmes, (red circles for the 2012 programme and yellow circles for the 2011 drilling programme). The main magnetic units are also defined on this figure. The southern extent of mineralisation is yet to be drilled.

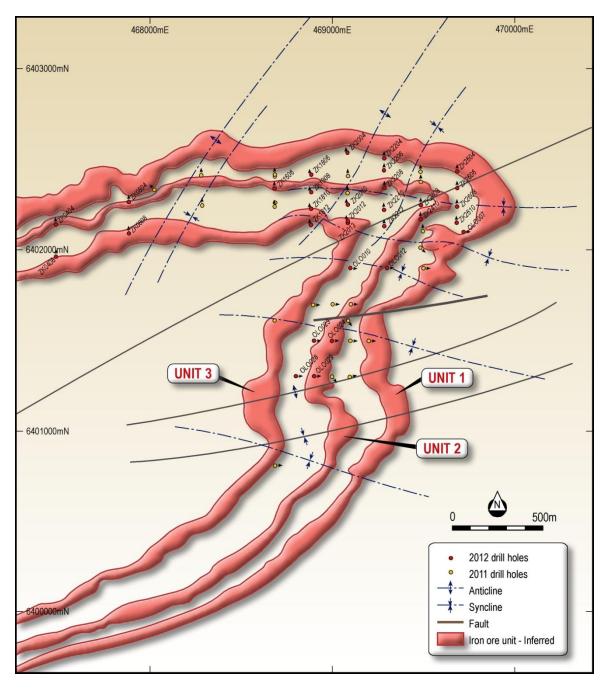


Figure 2: 2011, 2012 Drilling Programme, including the iron rich siltstones and the structure recognised in the area

The Olary Creek drilling programmes have targeted the northern part of the siltstone hosted Braemer Iron Formation which is highly prospective for bulk magnetite iron ore deposits in the region. The most southerly hole drilled in these programmes, ZK1619, which has previously been reported, returned significant results including 276.0 metres @ 67.15% Fe in concentrate in addition to other intervals up to 39.7 metres thick. Approximately 2km of strike of the three main mineralised horizons continue to the south of this intersection. Sampling only commenced in March 2012 but since then, assay results received have shown the Davis Tube Recovery (DTR) concentrate grades vary up to 70.95%Fe with generally low P, S, Al₂O₃ and SiO₂. Due to the extent of mineralisation, only rarely has DTR test work been completed on samples in the upper 80 metres, but there remains considerable potential in this area.

Results from several holes reported in this release have previously been reported, but previous results are from different intervals; either from the upper or lower parts of the holes.

Figure 3 represents a cross section through 468885mE in the northern part of the area, highlighting the separate magnetic rich iron units and the continuity of grade and thickness at depth.

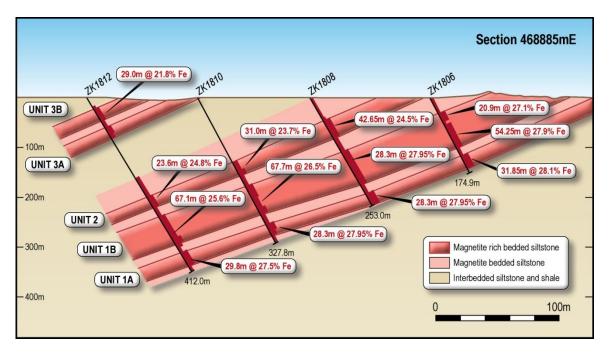


Figure 3: Olary Creek Section 468885mE

Table 1 below, summarises the collar details of the drill holes reported on in this announcement. Table 2 highlights all intersections of significance from these drill holes.

Hole No.	Coordinates		RC	DD	Total Depth	Azimuth	Dip
	N	E	(m)	(m)	(m)		
ZK0404	6402140	467485	148	-	148	360	60
ZK0408	6401965	467485	136	221.5	357.5	360	60
ZKE800	6401610	469085	-	454	454	118	60
ZK0804	6402265	467885	148	-	148	360	60
ZK0808	6402090	467885	270	96.6	366.6	360	60
ZK1812	6402139	468885	178	234	412	360	60
ZK2010	6402251	469085	202	102	304	360	60
ZK2012	6402161	469085	244	12	256	360	60
ZK2013	6402151	469085	300	127	427	360	60
ZK2208	6402342	469285	220	-	220	360	60
ZK2410	6402168	469485	300	106	406	360	60
ZK2604	6402435	469685	-	108	108	360	60
ZK2606	6402340	469685	194	-	194	360	60
ZK2608	6402240	469685	237	27.8	264.8	360	60
OL0007	6402100	469720	164	65	229	090	60
OL0010	6401900	469100	300	198.7	498.7	090	60
OL0012	6401900	469300	223	282	505	090	60
OL0017	6401698	468897	-	393.4	393.4	90	60

Table 1: Drill Holes Reported in this Release

Table 2: Olary Creek Assays – September 2012

								Concentrates					
Hole ID	From	То	Interval		Mass	Head	Fe	Al ₂ O ₃	Р	S	SiO ₂		
					Recovery	Grade							
	(m)	(m)	(m)			Fe%							
ZK0404	101	139	38	@	30.26	32.99	70.46	.117	.005	.002	1.71		
ZK0408	135.3	285.0	149.7	@	20.03	21.50	69.81	.210	.004	.003	2.90		
ZKE800	42	61	19	@	18.69	17.95	66.29	.460	.014	.006	6.40		
	88	112.3	24.3	@	20.29	22.31	67.40	.460	.013	.013	4.41		
	124.5	168.6	44.1	@	42.22	34.59	67.94	.390	.025	.040	4.16		
ZK0804	49	59	10	@	14.73	20.93	68.83	.258	.006	.005	3.08		
	78	125	47	@	24.66	26.16	69.66	.188	.007	.004	2.91		
ZK0808	89	101	12	@	19.95	21.59	70.10	.168	.006	.003	1.66		
	139	192	53	@	16.01	19.06	70.12	.181	.005	.010	2.37		
	197	270	73	@	15.86	18.52	69.47	.226	.005	.004	2.98		
	269.7	363.1	93.4	@	23.66	25.07	69.45	.268	.004	.006	3.21		

Avocet
RESOURCES LIMITED

/Contd					Concentrates						
Hole ID	From	То	Interval		Mass Recovery	Head Grade	Fe	Al ₂ O ₃	Р	S	SiO ₂
	(m)	(m)	(m)			Fe%					
ZK1812	41	61	20	@	15.16	19.54	68.24	.344	.015	.003	3.13
	69	98	29	@	15.40	21.85	69.28	.177	.007	.002	2.26
	192.25	399.2	199.95	@	20.15	22.30	69.00	.274	.006	.004	3.80
ZK2010	64	85	21	@	9.90	20.16	69.85	.244	.002	.002	2.28
	97	124	27	@	15.22	20.89	69.96	.256	.003	.001	2.84
	134	154	20	@	16.05	21.59	70.38	.249	.003	.003	2.26
	167	202	35	@	20.39	24.58	70.73	.197	.002	.003	1.64
	223.6	292.3	68.7	@	23.57	24.58	68.74	.327	.007	.011	3.65
ZK2012	134	228	94	@	13.76	18.36	64.86	.247	.003	.004	2.26
	244.2	256	11.80	@	26.27	27.48	70.95	.147	.004	.000	1.56
ZK2013	10	24	14	@	16.06	20.90	67.95	.223	.012	.005	3.58
	157	251	94	@	15.11	20.70	69.80	.218	.006	.003	2.92
	264	300	36	@	21.07	24.83	70.70	.195	.006	.002	1.85
	300	408	108	@	19.51	22.08	69.40	.286	.004	.001	3.26
ZK2208	85	138	53	@	19.06	23.68	70.32	.247	.003	.002	2.12
	156	220	64	@	27.38	24.84	69.88	.258	.002	.004	2.68
ZK2410	40	52	12	@	13.41	23.18	70.04	.223	.002	.004	1.60
	109	156	47	@	19.29	23.46	70.31	.202	.002	.005	2.30
	160	170	10	@	19.66	20.86	69.00	.303	.005	.003	3.77
	205	274	69	@	19.81	22.16	69.92	.293	.004	.005	2.58
	299	388.70	89.7	@	22.51	21.18	69.23	.224	.003	.001	3.52
ZK2604	64	70.3	6.3	@	17.86	42.07	69.07	.117	.016	.000	1.16
	74.1	101	26.9	@	17.00	23.13	68.82	.343	.008	.002	2.62
ZK2606	89	175	86	@	23.67	23.13	69.64	.272	.006	.003	2.82
ZK2608	73	81	8	@	14.76	23.85	69.73	.199	.005	.001	1.46
	90	144	54	@	17.93	21.58	70.48	.184	.005	.001	1.74
	156	237	81	@	23.93	21.54	69.97	.237	.005	.003	2.72
OL0007	164	177.5	13.5	@	22.16	18.25	68.55	.245	.004	.000	4.50
	182.95	229	46.05	@	34.94	28.89	69.77	.197	.006	.001	2.74
OL0010	104	215	111	@	17.12	20.02	69.06	.236	.006	.004	3.47
				-							
OL0012	85	99	14	@	23.75	19.93	68.57	.368	.007	.002	3.94
	186	263	77	@	27.92	22.84	69.68	.350	.006	.002	2.74
	285	300	15	@	22.51	19.31	69.42	.276	.006	.000	3.04

6

/Contd				Concentrates							
Hole ID	From	То	Interval		Mass Recovery	Head Grade	Fe	Al ₂ O ₃	Р	S	SiO ₂
	(m)	(m)	(m)			Fe%					
OL0017	23	32.6	9.6	@	15.58	20.00	68.52	.300	.010	.005	2.79
	40	76	36	@	11.93	13.39	67.08	.315	.008	.005	5.60
	80.4	113	32.6	@	11.03	14.02	67.32	.292	.007	.004	5.13
	166	214	48	@	12.37	15.01	68.23	.277	.005	.003	4.66
	229	342	113	@	23.28	22.11	69.03	.235	.008	.006	3.73

<u>Notes</u>

- DTR analysis completed by ALS Perth on drill core with grind size to 38 microns.
- All assays and DTR concentrate grades and head grades are assayed by XRF.
- Samples are composited at various intervals up to 3 metres dependant on magnetic susceptibility readings.
- Lower cut-off grade for DTR of Mass Recovery 5% Fe and one sample (up to 3 consecutive metres) of interval waste (<5% Fe mass recovery) included in any intersection, but more than one zone of internal waste can be included in any intersection.
- Significant intersections of mixed hematite/magnetite returned in upper 100 metres, have not been recorded due to insufficient DTR test work.

Further information relating to the Company and its various exploration projects can be found on the Company's website at <u>www.avocetresources.com.au</u>.

10th September 2012

Stephen Mann Managing Director

The information in this report that relates to Exploration Results and Mineral Resources is based on information compiled by Stephen Mann, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr. Mann has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which the Company is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Mann is a full-time employee of Avocet Resources Limited. Mr. Mann consents to the inclusion of the information in this announcement in the form and context in which it appears.

SM:jw