

26 NOVEMBER 2012

SIRIUS RESOURCES NL

ASX: SIR

ABN: 46 009 150 083

Street address: Unit 5, 5 Mumford Place, Balcatta 6021, Western Australia

Postal address: PO Box 1011, Balcatta 6914, Western Australia

Tel: +61 8 9240 8914

Fax: +61 8 9240 8915

Email: admin@siriusresources.com.au

Web: www.siriusresources.com.au

Projects:

Fraser Range nickel-copper, gold

Polar Bear gold, nickel

Canyon Creek molybdenum, copper, gold

Youanmi nickel, copper, PGM's

Collurabbie nickel, copper, PGM's

NOVA EXPLORATION UPDATE

Sirius Resources NL (**ASX:SIR**) ("**Sirius**" or the "**Company**") advises that two holes have been drilled at conductor 2. These holes intersected sulphides that do not appear to have significant levels of nickel and copper based on preliminary XRF analyses.

The two holes drilled at conductor 2 (SFRD0064 and SFRD0072) each intersected zones of sulphide (*see Figure* 1) but initial XRF analyses suggest that these sulphides contain less than 1% copper and no nickel. Whilst definitive laboratory assays are awaited these holes will be surveyed using downhole electromagnetics (DHEM) to ensure that the conductor has been adequately tested.

All drilling at Nova has been temporarily suspended due to persistent heavy rainfall and electrical storms, and it is likely to be several days before drilling resumes.

Once drilling resumes it will focus on Nova itself and the IP anomaly extending for 2 kilometres from conductor 5 to conductor 3.

Meanwhile, further holes drilled at Nova have provided the following visual and assay results (all estimated to be true width):

- 16 metres @ 1.66% nickel and 0.64% copper from 340.8 metres, including 4.05 metres @ 3.83% nickel and 0.87% copper from 341.4 metres in SFRD0108 on the 550N line at the southern end of the deposit.
- 84.85 metres of mixed (massive, breccia and strongly disseminated) sulphides from 294.0 metres, including 12.9 metres of massive sulphides from 351.9 metres in SFRD0128, an infill hole on the 650N line the thickest intersection yet at Nova.
- 40.4 metres @ 2.25% nickel and 1.1% copper from 314.0 metres, including 8.54 metres @ 5.24% nickel and 1.01% copper from 341.95 metres and 4.25 metres @ 4.76% nickel and 3.1% copper from 348.15 metres in SFRD0113, an infill hole on the 750N line.

A fifth rig is now on site and will continue to rapidly advance the infill, metallurgical and geotechnical drilling at Nova, the exploratory drilling of satellite positions around it, and the corridor stretching from Nova, via the IP anomaly, to conductor 3 once the weather improves.

Le Roma

Mark Bennett, Managing Director and CEO

Figure 1. Photo of sulphide intercept from SFRD0064 at conductor 2.

About the Nova nickel discovery

- The Nova deposit is a blind (ie concealed by transported sediments) virgin discovery which vindicates Sirius' exploration methodologies and corporate strategy of identifying high leverage greenfields opportunities in stable jurisdictions.
- It was discovered by Sirius' target identification expertise and systematic use of geological, geophysical and geochemical exploration techniques.
- Drilling at conductor 1 has delineated a major nickel-copper sulphide deposit approximately 500 metres long, up to 400 metres across and up to 80 metres thick.
- The EM conductor that represents the Nova deposit is the first EM target at the Eye nickel-copper prospect to be tested.
- The mineralisation comprises pyrrhotite, pentlandite and chalcopyrite within very strongly metamorphosed rocks termed granulites. The sulphide minerals are coarse grained and high tenor and will likely produce a clean high value concentrate and the accompanying silicate minerals are likely to be highly amenable to conventional separation techniques.
- The sulphides occur in a variety of styles typical of magmatic sulphide deposits. These include massive, matrix, net textured, breccia, blebby and disseminated sulphides.

Figure 2. Plan projection of Nova, showing location of new drillholes and assayed intersections. Previously reported intercepts are shown as metal factor (ie, estimated true width x grade, commonly referred to as %metre, %m or metal factor). Visual intercepts (awaiting assays) are shown as descriptive labels. Refer to Table 1 and previous announcements for assayed intersections.

- The host rock is a hypersthene-augite-garnet-hornblende-labradorite-quartz gneiss interpreted to represent a strongly metamorphosed mafic-ultramafic intrusion of predominantly gabbroic composition.
- The deposit is only 40km north of the Eyre Highway and closer, via sealed road, to the port of Esperance than any operating nickel sulphide mine/concentrator in Western Australia.
- Planned metallurgical testwork will better quantify the mineralisation in terms of its crushing, grinding and flotation characteristics, the deportment of nickel and copper within the sulphides and the level (if any) of any deleterious or penalty elements in such a concentrate.

Figure 3. Cross section 550N.

About the Fraser Range Joint Venture

The Fraser Range Joint Venture is a joint venture between Sirius Resources (70%) and companies of the Creasy Group (30%), owned by Mark Creasy who is also Sirius' major shareholder through his investment company, Yandal Holdings Pty Ltd.

The joint venture ground covers over 100 strike kilometres of the prospective belt and Sirius, together with various private companies owned by Mark Creasy, control the majority of this new nickel province.

Sirius acknowledges the assistance provided by the WA Government co-funded drilling program, which sponsored a previous reconnaissance drill hole on the project area (see previous ASX announcements).

Figure 4. Cross section 650N.

Figure 5. Cross section 750N.

Hole No.	North	East	Dip	Azim	From, m	To, m	Width m	Grade, % Ni, Cu, Co & g/t Ag, Au, Pt, Pd
SFRC0024	6479500	518210	60	270	174	175	1	0.76% Ni, 1.36% Cu, 0.03% Co, 4.0g/t Ag
	A	And			178	181	3	0.31% Ni, 0.68% Cu, 0.01% Co, 1.4g/t Ag
	A	And			191	195	4	4.02% Ni, 1.41% Cu, 0.12% Co, 2.2g/t Ag
SFRC0025	6479500	518080	60	270	-	-	-	Missed target
SFRC0026	6479500	518140	60	270	123	136	13	4.30% Ni, 1.83% Cu, 0.12% Co, 3.1g/t Ag, 0.09g/t Pd, 0.08g/t Pt
	Incl	uding			128	136	8	5.81% Ni, 2.26% Cu, 0.16% Co, 3.7g/t Ag, 0.12g/t Pd, 0.12g/t Pt
SFRC0027	6479500	518250	60	270	229	238	9	1.48% Ni, 0.86% Cu, 0.05% Co, 2.5g/t Ag, 0.15g/t Au
	Incl	uding			229	232	3	1.45% Cu, 0.4% Ni, 4.9g/t Ag, 0.34g/t Au
	A	And			232	238	6	1.84% Ni, 0.57% Cu
	Incl	uding			236	237	1	4.70% Ni, 0.40% Cu, 0.12% Co
SFRC0028	6479450	518140	60	270	116	120	4	0.48% Ni, 0.38% Cu, 0.02% Co, 0.09g/t Ag
	A	And			156	164	8	0.25% Ni, 0.22% Cu, 1.5g/t Ag
SFRC0029	6479600	518300	60	270	234	236	2	0.96% Ni, 0.46% Cu, 1.3g/t Ag
SFRC0030	6479600	518250	60	270	188	196	8	0.41% Ni, 0.40% Cu, 0.02% Co, 1.78g/t Ag
SFRC0031	6479600	518200	60	270	-	-	-	Missed target
SFRC0032	6479500	518085	75	270	60	64	4	1.47% Ni, 0.17% Cu, 0.05% Co, 0.25g/t Ag
	á	and			80	82	2	2.11% Ni, 1.12% Cu, 0.07% Co, 4.25g/t Ag

SFRC0033	6479500	518155	75	270	165	171	6	3.16% Ni, 0.49% Cu, 0.10% Co, 1.12g/t Ag
SFRC0034	6479500	518230	60	270	200	204	4	0.22% Ni, 1.07% Cu, 0.01% Co, 2.8g/t Ag
		And			212	219	7	1.27% Ni, 0.35% Cu, 0.04% Co, 0.84g/t Ag
	Inc	luding			216	219	3	2.63% Ni, 0.45% Cu, 0.08% Co, 1.13g/t Ag
		And			220	224	4	0.18% Ni, 0.47% Cu, 1.1g/t Ag
SFRD0035	6479500	518155	70	270	146.70	152.90	6.20	1.68% Ni, 0.36% Cu, 0.05% Co, 0.3g/t Ag
	Inc	luding			149.20	152.90	2.90	2.52% Ni, 0.44% Cu, 0.08% Co, 0.5g/t Ag
SFRC0036	6479800	518500	90	n/a	n/a	n/a	n/a	Abandoned
SFRD0037	6479600	518300	60	270	263.90	268.40	4.50	0.23% Ni, 1.16% Cu, 0.01% Co, 3.9g/t Ag, 0.1g/t Pt
		and			268.40	281.70	13.30	3.9% Ni, 2.0% Cu, 0.12% Co, 3.7g/t Ag
	Inc	luding			271.85	279.00	7.15	5.1% Ni, 2.36% Cu, 0.15% Co, 4.0g/t Ag
SFRD0037	6479600	518300	60	270	263.90	268.40	4.50	0.23% Ni, 1.16% Cu, 0.01% Co, 3.9g/t Ag
SFRD0038	6479500	518300	70	270	285.4	286.1	0.7	2.85% Ni, 0.33% Cu, 0.08% Co
SFRD0039	6479600	518350	69	270	270.0	271.0	1.0	1.71% Ni, 0.51% Cu, 0.06% Co, 0.8g/t Ag
		And			272.97	273.24	0.27	6.58% NI, 0.98% Cu, 0.21% Co, 1.6g/t Ag
		And			298.1	313.52	15.42	2.74% Ni, 1.09% Cu, 0.09% Co, 2.54g/t Ag
	Inc	luding			298.1	301.7	3.6	4.83% Ni, 1.73% Cu, 0.15% Co, 3.98g/t Ag
	/	And			311.3	313.5	2.22	5.92% Ni, 0.82% Cu, 0.19% Co, 1.85g/t Ag
SFRD0041	6479600	518350	76	270	293.4	329.0	35.6	3.47% NI, 1.44% Cu, 0.10% Co, 3.19g/t Ag
	Inc	luding			293.4	308.9	15.5	4.72% Ni, 1.98% Cu, 0.15% Co, 4.7g/t Ag
	Inc	luding			302.17	308.9	6.73	6.11% Ni, 2.14% Cu, 0.19% Co, 4.95g/t Ag
		And			321.66	326.68	5.02	6.11% Ni, 2.57% Cu, 0.19% Co, 5.64g/t Ag
	/	Also			341.0	344.0	3.0	1.86% Ni, 1.26% Cu, 0.05% Co, 4.61g/t Ag
		And	60		349.6	350.5	0.9	6.15% Ni, 1.25% Cu, 0.19% Co, 2.5g/t Ag
SFRD0042	6479700	518400	60	270	361.3	384.0	22.7	0.91% Ni, 0.73% Cu, 0.02% Co, 6.55g/t Ag, 0.1g/t Au
6500042	6470600	and	74	270	392.72	413.65	20.93	1.56% Ni, 0.65% Cu, 0.05% Co, 1.85g/t Ag
SFRD0043	6479600	518400	/4	270	314.4	319.8	5.4	4.72% Ni, 2.01% Cu, 0.14% Co, 3.98g/t Ag
		and India a			330.74	344.57	13.83	3.11% NI, 0.97% Cu, 0.10% Co, 2.6g/t Ag, 0.12g/t Pt
SEBD0044			80	270	338./3	344.57	5.84	5.11% NI, 1.4% CU, 0.16% CO, 3.46g/t Ag, 0.26g/t Pt
SFRD0044	6479600	518400	80	270	327.8	332.38	4.58	2.33% NI, 0.67% Cu, 0.07% Co, 1.3g/t Ag
		anu			346.05	262 21	7.00	2.2% Ni: 1.27% Cu, 0.07% Co, 2.9%/t Ag, 0.1%/t Au
SEPD0045	6479550	519250	60	270	248.05	250 75	1.21	1 21% Ni 0 40% Cu 0.04% Co 0 45g/t Ag
51100045	0475550	and	00	2/0	255 11	257.19	2.08	1 93% Ni 0 35% Cu 0 07% Co 0 28g/t Ag
SERD0046					233.11	257.15	2.00	1.55% (M, 0.55% Cd, 0.07% C0, 0.20g) (Ag
W1	6479700	518500	67	270	363.75	384.0	20.25	1.94% Ni, 0.53% Cu, 0.06% Co, 1.67g/t Ag
	inc	luding			364.82	367.43	2.61	7.45% Ni. 0.98% Cu. 0.25% Co. 1.94g/t Ag. 0.1g/t Pd
		and			402.75	405.02	2.27	5.18% Ni. 1.63% Cu. 0.16% Co. 3.81g/t Ag
SFRD0047	6479550	518350	70	270	265.37	272.67	7.3	0.64% Ni, 0.36% Cu, 0.02% Co
		and			296.1	300.91	4.81	1.09% Ni, 0.41% Cu, 0.03% Co
SFRD0049	6479600	518550	60	270	405.74	426.0	20.26	1.57% Ni. 0.51% Cu. 0.05% Co. 1.66g/t Ag
SFRD0050	6479600	518560	70	270	362.94	363.95	1.01	4.92% Ni. 1.06% Cu. 0.16% Co
		and			398.0	404.8	6.8	0.79% Ni. 0.5% Cu. 0.03% Co
		and			412.85	419.07	6.22	1.77% Ni, 0.41% Cu, 0.06% Co
SFRD0051	6479550	518200	82	270	206.0	209.0	3.0	1.25% Ni, 0.15% Cu, 0.03% Co
		and			218.0	223.8	5.8	2.05% Ni, 0.79% Cu, 0.06% Co
	inc	luding			221.0	223.8	2.8	3.06% Ni, 0.91% Cu, 0.09% Co
SFRD0052	6479550	518200	60	270	159.0	164.0	5.0	0.57% Ni, 2.36% Cu, 0.03% Co, 10.01g/t Ag, 0.15g/t Au
	Inc	luding			159.0	161.0	2.0	0.43% Ni, 4.68% Cu, 0.03% Co, 19.21g/t Ag, 0.21g/t Au
SFRD0053	6479700	518500	60	270	376.0	383.3	7.3	2.2% Ni, 0.6% Cu, 0.07% Co
		and			393.0	410.0	17.0	3.68% Ni, 3.82% Cu, 0.12% Co
	inc	luding			398.9	410.0	11.1	4.31% Ni, 5.03% Cu, 0.14% Co
SFRD0054	6479600	518500	79	270	392.44	405.07	12.63	2.57% Ni, 1.85% Cu, 0.08% Co
SFRD0055	6479650	518400	70	270	310.5	312.07	1.57	1.99% Ni, 0.57% Cu, 0.07% Co
		and			331.06	366.28	35.22	3.09% Ni, 1.06% Cu, 0.10% Co
	inc	luding			354.75	366.28	11.53	5.42% Ni, 1.83% Cu, 0.17% Co
SFRD0056	6479650	518400	60	270	276.24	277.44	1.2	0.86% Ni, 3.11% Cu, 0.04% Co
		and		-	282.77	292.8	10.03	0.85% Ni, 0.49% Cu, 0.03% Co
		and			301.0	304.0	3.0	0.26% Ni, 1.18% Cu, 0.02% Co
		and			309.0	326.72	17.72	1.58% Ni, 0.72% Cu, 0.05% Co
	inc	luding			321.1	326.72	5.62	3.48% Ni, 1.12% Cu, 0.11% Co
SFRD0057	6479700	518600	70	270	393.01	431.91	38.9	3.23% Ni, 1.46% Cu, 0.10% Co
	inc	luding			407.05	423.49	16.44	5.23% Ni, 2.19% Cu, 0.16% Co
	inc	luding			413.38	423.49	10.11	6.0% Ni, 2.75% Cu, 0.19% Co
SFRD0058	6479700	518350	77	270	298.0	345.2	47.2	1.86% Ni, 0.57% Cu, 0.06% Co

	inc	luding			309.2	345.2	36.0	2.23% Ni, 0.65% Cu, 0.08% Co
			309.2	312.25	3.05	6.1% Ni, 1.31% Cu, 0.19% Co		
SFRD0059	6479800	518600	71	270	416.48	422.22	5.74	3.3% Ni, 0.8% Cu, 0.1% Co
SFRD0060	6479650	518520	60	270	368.0	376.0	8.0	0.89% Ni, 0.46% Cu, 0.03% Co
		and			395.0	410.45	15.45	4.61% Ni, 2.19% Cu, 0.15% Co
	inc	luding			396.25	405.1	8.85	6.29% Ni, 3.08% Cu, 0.21% Co
	i	and			417.0	423.0	6.0	2.02% Ni, 1.01% Cu, 0.06% Co
SFRD0061	6479650	518520	67	270	361.82	423.5	61.68	3.4% Ni, 1.27% Cu, 0.10% Co
	inc	luding			361.82	364.21	2.39	6.56% Ni, 1.5% Cu, 0.19% Co
	i	and			384.08	406.93	22.85	5.83% Ni, 2.03% Cu, 0.17% Co
SFRD0065	6479800	518600	65	270	404.0	422.05	18.05	4.11% Ni, 1.74% Cu, 0.13% Co
	inc	luding			410.3	419.4	9.1	6.2% Ni, 2.67% Cu, 0.20% Co
SFRD0066	6479700	518600	75	270	412.02	420.47	8.45	4.19% Ni, 1.6% Cu, 0.12% Co
SFRD0070	6479800	518600	60	270	379.82	384.63	4.81	0.93% Ni, 0.33% Cu, 0.02% Co
	i	and			394.92	423.00	28.08	4.48% Ni, 1.77% Cu, 0.14% Co
	inc	luding			399.29	405.5	6.21	5.93% Ni, 2.55% Cu, 0.18% Co
	i	and			412.4	423.0	10.6	6.5% Ni, 2.48% Cu, 0.20% Co
SFRD0076	6479700	518600	82	270	346.0	349.6	3.6	4.43% Ni, 1.42% Cu, 0.16% Co
	i	and			362.5	365.0	2.5	1.04% Ni, 0.4% Cu, 0.04% Co
SFRD0077	6479650	518520	75	270	349.0	412.6	63.6	3.41% Ni. 1.3% Cu. 0.11% Co
	inc	luding			363.0	378.23	15.23	7.01% Ni. 2.36% Cu. 0.22% Co
SFRD0078	6479800	518500	66	270	343.0	346.0	3.0	0.95% Ni. 0.12% Cu. 0.03% Co
		and			358.0	363.0	5.0	0.96% Ni. 0.24% Cu. 0.03% Co
		and			377.3	383.3	6.0	4.63% Ni. 0.84% Cu. 0.15% Co
SFRD0079	6479700	518740	71	270	380.0	381.6	1.6	0.85% Ni. 0.34% Cu. 0.02% Co
SFRD0086	6479650	518250	84	270	395.95	400.0	4.05	1.09% Ni. 0.42% Cu. 0.04% Co
		and			405.0	412.5	7.5	0.71% Ni. 0.52% Cu. 0.03% Co
		and			416.35	421.0	4.65	2.32% Ni. 0.86% Cu. 0.07% Co
SFRD0087	6479800	518500	60	270	327.0	330.0	3.0	0.88% Ni, 0.42% Cu, 0.02% Co
		and			353.0	375.65	22.65	1.58% Ni, 0.59% Cu, 0.05% Co
	inc	luding		5	363.0	375.65	12.65	2.26% Ni. 0.79% Cu. 0.07% Co
	inc	luding		V	373.0	375.65	2.65	5.47% Ni. 0.96% Cu. 0.16% Co
SFRD0090	6479750			270	376.11	409.91	33.8	4.03% Ni, 1.69% Cu, 0.13% Co
	inc	luding			388.96	401.96	13.0	5.43% Ni, 2.25% Cu, 0.18% Co
SFRD0093	6479800	518450	60	270	307.0	323.6	16.6	1.31% Ni, 0.54% Cu, 0.04% Co
	inc	luding			321.4	323.6	2.2	4.02% Ni, 1.18% Cu, 0.12% Co
			330.65	331.0	0.35	0.73% Ni, 10.9% Cu, 0.05% Co		
SFRD0094	6479700	518350	66	270	244.9	248.0	3.1	1.32% Ni, 0.23% Cu, 0.05% Co
	i	and	1		289.3	289.8	0.5	6.53% Ni, 1.14% Cu, 0.19% Co
		and			294.0	295.4	1.4	0.67% Ni, 1.6% Cu, 0.03% Co
SFRD0095	6479900			270	270.0	285.0	15.0	0.52% Ni, 0.28% Cu, 0.03% Co
			279.0	282.0	3.0	1.01% Ni, 0.45% Cu, 0.05% Co		
SFRD0098	6479750	518540	60	270	394.35	415.07	20.72	3.13% Ni, 1.93% Cu, 0.10% Co
SFRD0107	6479850	518570	60	270				NSI
SFRD0108	6479550	518435	65	270	340.8	356.8	16.0	1.66% Ni, 0.64% Cu, 0.05% Co
	inc	luding			340.8	349.0	8.2	2.55% Ni, 0.62% Cu, 0.08% Co
	inc	luding			341.4	345.45	4.05	3.82% Ni, 0.87% Cu, 0.11% Co
SFRD0109	6479650	518275	60	270	183.0	185.01	2.01	1.1% Ni, 6.66% Cu, 0.06% Co
SFRD0110	6479750	518710	60	270	441.25	458.2	16.95	0.85% Ni, 0.32% Cu, 0.03% Co
SFRD0111	6479800	518745	60	270				NSI
SFRD0112	6479550	518435	80	270	344.65	345.95	1.3	1.06% Ni, 0.35% Cu, 0.04% Co
SFRD0113	6479750	518420	69	270	273.12	274.45	1.33	1.35% Ni, 0.62% Cu, 0.03% Co
	i	and			312.0	352.4	40.4	2.25% Ni, 1.1% Cu, 0.07% Co
	Inc	luding			327.9	336.44	8.54	5.24% Ni, 1.01% Cu, 0.16% Co
	i	and			348.15	352.4	4.25	4.76% Ni, 3.1% Cu, 0.16% Co

Table 1. Drill results from the Nova deposit. Visual estimates are not included here until assays are received.

Competent Persons statement

The information in this report that relates to Exploration Results is based on information compiled by Mark Bennett who is an employee of the company. Dr Bennett is a member of the Australasian Institute of Mining and Metallurgy, a fellow of the Australian Institute of Geologists and a fellow of the Geological Society of London. Dr Bennett has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2004 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Bennett consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

Exploration results are based on standard industry practices, including sampling, assay methods, and appropriate quality assurance quality control (QAQC) measures. Reverse circulation (RC), aircore (AC) and rotary air blast (RAB) drilling samples are collected as composite samples of 4 or 2 metres and as 1 metre splits (stated in results). Mineralised intersections derived from composite samples are subsequently re-split to 1 metre samples to better define grade distribution. Core samples are taken as half NQ core or quarter HQ core and sampled to geological boundaries where appropriate. The quality of RC drilling samples is optimised by the use of riffle and/or cone splitters, dust collectors, logging of various criteria designed to record sample size, recovery and contamination, and use of field duplicates to measure sample representivity.

For soil samples, PGM and gold assays are based on an aqua regia digest with Inductively Coupled Plasma (ICP) finish and base metal assays may be based on aqua regia or four acid digest with inductively coupled plasma optical emission spectrometry (ICPOES) or atomic absorption spectrometry (AAS) finish. In the case of reconnaissance RAB, AC, RC or rock chip samples, PGM and gold assays are based on lead or nickel sulphide collection fire assay digests with an ICP finish, base metal assays are based on a four acid digest and inductively coupled plasma optical emission spectrometry (ICPOES) and atomic absorption spectrometry (AAS) finish, and where appropriate, oxide metal elements such as Fe, Ti and Cr are based on a lithium borate fusion digest and X-ray fluorescence (XRF) finish. In the case of strongly mineralised samples, base metal assays are based on a special high precision four acid digest (a four acid digest using a larger volume of material) and an AAS finish using a dedicated calibration considered more accurate for higher concentrations.

Sample preparation and analysis is undertaken at Minanalytical, Genalysis Intertek and Ultratrace laboratories in Perth, Western Australia. The quality of analytical results is monitored by the use of internal laboratory procedures and standards together with certified standards, duplicates and blanks and statistical analysis where appropriate to ensure that results are representative and within acceptable ranges of accuracy and precision.

Where quoted, nickel-copper intersections are based on a minimum threshold grade of 0.5% Ni and/or Cu, and gold intersections are based on a minimum gold threshold grade of 0.1g/t Au unless otherwise stated. Intersections are length and density weighted where appropriate as per standard industry practice. All sample and drill hole co-ordinates are based on the GDA/MGA grid and datum unless otherwise stated. Exploration results obtained by other companies and quoted by Sirius have not necessarily been obtained using the same methods or subjected to the same QAQC protocols. These results may not have been independently verified because original samples and/or data may no longer be available.

The information in this report that relates to Mineral Resources is based on information compiled by Andrew Thompson who is an employee of the company. Mr Thompson is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2004 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Thompson consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

Mineral Resources, if stated, have been estimated using standard accepted industry practices, as described in each instance. Top cuts have been applied to the composites based on statistical analysis and consideration of the nature and style of mineralization in all cases. Where quoted, Mineral Resource tonnes and grade, and contained metal, are rounded to appropriate levels of precision, which may cause minor apparent computational errors. Mineral Resources are classified on the basis of drill hole spacing, geological continuity and predictability, geostatistical analysis of grade variability, sampling analytical spatial and density QAQC criteria, demonstrated amenability of mineralization style to proposed processing methods, and assessment of economic criteria.

RESOURCES