m
 MATSA
 res OURCES
 LIMITED
 ABN 48106732487

New gold mineralised zones discovered at Killaloe

Highlights

- New gold mineralised zone identified by maiden RC drilling programme at Gossan E
- 2 new gold mineralised zones identified by first pass aircore drilling programme at KLGTO2
- Recently received assay results (23/10/13) from $1 m$ splits include highest value at Gossan E of 1 m @ $7.24 \mathrm{~g} / \mathrm{t}$ Au
- Drilling has intersected broad zones of anomalous gold at Gossan E with values in hole RCOO1 of up to 48 m @ $0.28 \mathrm{~g} / \mathrm{t}$ Au from $4 m$ depth including 1m @ 7.24g/t Au, and 1m @ 2.74g/t Au in RCOO4
- 3 aircore drill holes at KLGTO2 insersected anamolous gold values:

○ $2 m @ 0.68 \mathrm{~g} / \mathrm{t}$ Au from 16 m to end of hole, being a possible extention of Sirius Resources' Polar Bear/Humphrey prospect

- 2 drillholes intersected anomalous gold values including $4 m$ @ $0.33 \mathrm{~g} / \mathrm{t}$ Au being a possible NW extensions to Gossan E
- Other results received include up to $4.1 \mathrm{~g} / \mathrm{t}$ silver and up to 0.12% zinc in 3 aircore holes at KLGTO1
- Final split results from drilling targeting nickel and base metals are currently being interpreted

Matsa Resources Limited ("Matsa" or "the Company" ASX:MAT) is pleased to advise the results of reverse circulation (RC) and aircore drilling carried out during September 2013 at the Killaloe JV project (MAT 80%, CUL 20\%).

CORPORATE SUMMARY
Executive Chairman
Paul Poli
Director
Frank Sibbel
Director \& Company Secretary
Andrew Chapman
Shares on Issue
144.15 million

Unlisted Options
12.55 million @ \$0.31-\$0.45

Top 20 shareholders
Hold 48\%
Share Price on 24 October 2013
26.5 cents

Market Capitalisation
$\$ 38.20$ million

Matsa Resources Limited

This programme was focused on identifying the source of gold in anomalous soil and rock chip samples at the Gossan E, KLGTO1 and KLGTO2 prospects described in announcements to the ASX on $18{ }^{\text {th }}$ June 2013, $1^{\text {st }}$ July 2013 and $31^{\text {st }}$ July 2013.

This report includes the most recent assay results received up until the $23^{\text {rd }}$ October 2013. These comprise assays of 4 m composite samples of both RC and aircore drill holes, together with 1 m re-split samples of anomalous RC composites only. The 1 m aircore composite splits are in progress and assays will be reported as they become available.

A description of exploration methods and data acquisition including drilling and assay procedures are supplied in Appendix 1, as required under the JORC 2012 guidelines.

Mr Paul Poli Executive Chairman said "the gold results are pleasing in that they signify a new gold discovery, with some 1 metre intercepts being relatively high grade. We were initially encouraged by the success that Sirius Resources had at their Polar Bear Project, which is next door to us. The results from this first pass drill program are highly encouraging and we hope this initiall discovery will improve with closer infill and deeper drilling and with more thorough exploration of this virgin area.

We initially entered this area searching for additional material for the Mt Henry Gold project. Due to the proximity of the possible future Mt Henry Gold treatment plant being within short trucking distance, any gold resource at Killaloe could provide further shareholder value to Matsa" Mr Poli added.

Key Assay Results (Figure 1)

Gossan E RC Drilling

All 3 RC drillholes completed at Gossan E intersected gold mineralisation, with significant intercepts based on composite and 1 m split assays, as shown below. Individual narrow zones with higher gold grades are noted within 2 broader anomalous gold intercepts in a fractured and altered quartz feldspar porphyry sill. The third hole (13KLRC004) intersected a narrow mineralised quartz vein in ultramafic rocks. Additional drilling to define the gold mineralisation within the porphyry is now planned to follow up these encouraging results.

13KLRCOO1 48 m of $0.28 \mathrm{~g} / \mathrm{t}$ Au from 4 m , includes 1 m of $0.94 \mathrm{~g} / \mathrm{t}$ Au from 6 m and 1 m of $7.24 \mathrm{~g} / \mathrm{t}$ Au from 48 m .

13KLRCOO5 20 m of $0.16 \mathrm{~g} / \mathrm{t}$ Au from 8 m , includes 1 m of $0.52 \mathrm{~g} / \mathrm{t}$ Au from 9 m and 1 m of $0.81 \mathrm{~g} / \mathrm{t}$ Au from 22 m .

13KLRCOO4 2 m of $1.46 \mathrm{~g} / \mathrm{t}$ Au from 56 m including 1 m of $2.74 \mathrm{~g} / \mathrm{t}$ Au from 57 m .

Matsa is very encouraged by the results of these 3 widely spaced drillholes, given that they all intersected mineralisation, and proposes to actively explore for thicker and higher grade gold mineralisation along this 2.5 km long corridor which remains open to the NW and SE.

KLGT02 Aircore Drilling

Of the 35 aircore drillholes at KLGTO2, 3 returned anomalous gold values of which the highest value of $2 \mathrm{~m} @ 0.63 \mathrm{~g} / \mathrm{t}$ Au is located within 1 km and along strike from Sirius Polar Bear/Humphrey Gold prospect. The other 2 anomalous intersections may represent a strike extension of the Gossan E Felsic porphyry system.

Matsa Resources Limited

13KACO24 2 m of $0.63 \mathrm{~g} / \mathrm{t}$ Au and $0.16 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ from 16 m at bottom of hole.
13KACOO5 4 m of $0.33 \mathrm{~g} / \mathrm{t}$ Au from 40 m .
13KACOO2 4 m of $0.15 \mathrm{~g} / \mathrm{t}$ Au from 28 m .

KLGT01 Aircore Drilling

The significance of weakly elevated silver ($<4.1 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$) and zinc ($<0.12 \% \mathrm{Zn}$) values in 3 holes is not clear and is currently being assessed in conjuction with a review of high resolution GSWA aeromagnetic data.

13KLACOO8 2 m of $4.1 \mathrm{~g} / \mathrm{t}$ Ag from 28 m .

13KLACO14 4 m of $2.2 \mathrm{~g} / \mathrm{t}$ Ag from 36 m .

13KLAC015 4 m of $0.9 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ from 32 m and 4 m of $0.12 \% \mathrm{Zn}$ from 48 m .

Figure 1: Gossan E/Felsic Porphyry and KLGTO2 Gold Target Drilling Summary

Aircore Drilling

The aircore drilling programme comprising a total of 55 holes for $1,364 \mathrm{~m}$ was carried out during September 2013. Aircore drilling was carried out as 2 separate programmes to test 2 gold targets, KLGT01 and KLGT02. Drillhole locations and orientations are presented in Appendix 2.

Matsa Resources Limited

KLGTO1

Drilling was carried out using a 4×4 truck mounted Challenger RAB/Aircore 150 rig. The programme comprised 20 drill holes for 623 m along 3 sections 400 m apart and holes at 50 m spacings. The holes were oriented -60 due east with hole depths between 14 and 71 m .

Deeply weathered (up to 50 m) basement rocks are typically concealed by around 4 m of calcrete and calcareous soil cover. Relatively unweathered rocks, typically encountered close to drill refusal, consist of quartzo-feldspathic sandstones, shales and minor crystal tuffs, often weakly pyritic.

KLGTO2

Drilling was carried out using a specialised Lake rig because of the targets location in Lake Cowan where around 0.5 m of water had accumulated at the time of drilling. A total of 35 vertical holes with an aggregate meterage of 741 m was completed with hole depths between 4 m and 60 m . Drill holes were spaced between 50 m to 100 m apart along 3 sections (Figure 1).

Drillholes intersected muddy saline lake sediments to a depth of $\sim 5 \mathrm{~m}$ overlying variably weathered basement rocks made up of mostly ultramafic volcanics (komatiites) with intercalated sediments including graphitic shale and greywacke.

Individual 1 m re-split sampling of gold anomalous composite aircore intercepts has not yet been finalised.

Reverse Circulation Drilling - Gossan E

A total of 3 RC drill holes were completed over the Gossan E target for a total of 360 m (Figure 1).
The target concept was for gold mineralisation in quartz veins developed in relatively brittle felsic porphyry sill intruding ultramafic rocks of the Eastern Ultramafic Belt (EUB).

Drillholes 13 KRC001 and 13 KRCO05 were sited to test a soil gold anomaly with values up to $0.4 \mathrm{~g} / \mathrm{t}$ Au along part of the Felsic porphyry sill. Both drillholes intersected relatively fresh pervasively silicified quartz feldspar porphyry containing sparse quartz veins.

Drillhole 13 KRCO 04 was sited to test for the source of highly anomalous gold values up to $3.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ in rock chip samples collected from scattered iron rich "gossan" float material adjacent to an extension of the Felsic porphyry sill at the Gossan E target. The drillhole intersected variably weathered ultramafic rocks with narrow quartz veins, but was terminated before entering the Felsic porphyry sill.

First pass sampling of RC drill holes comprised collection of composite samples up to 4 m in length of 1 kg to 3 kg in weight which were submitted for gold only analysis.

Automated sampling was carried out during RC drilling providing 1 m samples as re-splits for gold anomalous composite intervals.

Assays of a selected element suite and assay ranges are presented for $4 m$ composite samples in Appendicies 3 and 4 respectively. Assays of a selected element suite and assay ranges are presented for 1 m re-split samples in Appendicies 5 and 6 respectively.

Matsa Resources Limited

Results and discussion

Gossan E

Broad highly anomalous gold intercepts in drillholes 13KLRCOO1 and 13KLRCO05 including 48m @ $0.28 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ occur in a silicified pyritic fractured quartz feldspar porphyry sill. Individual narrow
 stringer quartz veins and more intense silicification.

Drillhole 13KRCOO4 was sited to test for the source of anomalous gold up to $3.3 \mathrm{~g} / \mathrm{t}$ Au in rock chip samples of porous iron oxide rich "gossan" discovered as scattered float at the edge of the lake.
 vein.

KLGTO2

Three aircore drillholes intersected anomalous gold values in variably weathered ultramafic rocks with a best value of $\mathbf{2 m} @ 0.63 \mathrm{~g} / \mathrm{t}$ Au in drillhole 13 KACO 24 . Given that these drillholes are following up weak MMI soil values in lake sediments and that the intercepts are in vertical holes 100m apart, Matsa believes these results to be potentially significant.

Drillhole 13KACO24 is located 1 km along interpreted strike from Sirius Resources' Polar Bear/Humphrey prospect and the intercept was achieved at the end of hole and remains open at depth.

The other 2 holes with anomalous gold values up to $4 \mathrm{~m} @ \mathbf{0 . 3 3 \mathrm { g } / \mathrm { t }} \mathrm{Au}$ are located 1.5 km NW of 13 KRC005 at Gossan E, and gold mineralisation may be related to the Gossan E target.

Matsa is very encouraged by the results from this "sighter" aircore programme on the lake and proposes to carry out additional aircore and possibly diamond drilling to develop a viable exploration target for gold.

For further information, please contact:

| Paul Poli
 Executive Chairman | Frank Sibbel
 Director |
| :--- | :--- | :--- |
| Phone | +61892303555 |
| Fax | +61892270370 |
| Email | reception@matsa.com.au |
| Web | www.matsa.com.au |

Exploration results

The information in this report that relates to Exploration results, is based on information compiled by David Fielding, who is a Fellow of the Australasian Institute of Mining and Metallurgy. David Fielding is a full time employee of Matsa Resources Limited. David Fielding has sufficient experience which is relevant to the style of mineralisation and the type of ore deposit under consideration and the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. David Fielding consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Matsa Resources Limited

Appendix 1 - Matsa Resources Limited - Killaloe JV Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	- Soil Samples comprise approximately 300 g of -1.5 mm bulk soils collected between a depth of 10 and 30 cm . Assay techniques such as Mobile Metal Ion (MMI) partial digest require that stainless steel shovel for digging and plastic trowel to scoop out soil is used to minimize sample contamination. - Input from geochemical consultants eg ioGlobal Ltd has been sought from time to time to ensure that the size of sample is sufficient to ensure representivity of the soil mass being sampled. The target elements being sought are not present in coarse aggregates, coarse gold is not being targeted consequently 300 g is sufficient for a representative sample. - From a sampling perspective the target is basement mineralization. Sampling procedures for total digest are focused on the clay fraction which captures and amplifies the geochemical response above basement mineralization. Sample procedures for MMI likewise target the amplified geochemical response associated with mobile ions of the target element.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	- Aircore Drilling carried out by Challenge Drilling at KLGT01. Vacuum Bit achieving accurate face sampling. Bit diameter 7580 mm . - Aircore Drilling carried out by Ausdrill at KLGT02 using specialized lake rig. - Reverse circulation carried out by Frontline drilling using a truck-mounted Atlas Copco MK10 RC rig equipped with a facesampling hammer bit.
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure	- Recovery was not measured.

Matsa Resources Limited

representative nature of the samples.

- Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.
- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
- The total length and percentage of the relevant intersections logged.
- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.
- Visual logging carried out on washed cuttings. All washed cuttings were retained in boxes. Logging recorded as qualitative description of colour and lithological type.
- Samples of $1-4 \mathrm{~m}$ were composited for assay. The subsampling technique was carried out by hand spearing drill residues over specified intervals to achieve a final sample weight of around 3 kg . The opportunity exists to go back to individual splits as a check on composite assay values.
- Composite samples with results above $0.1 \mathrm{~g} / \mathrm{t}$ Au were chosen for the 1 m split sampling. Bulk residues of the bagged 1 m interval were passed through a three-tier riffle splitter producing a $1-3 \mathrm{~kg}$ sample.
- For RC drilling, 1 m rotary split samples with each weighing 1-3 kg are stored. Selected 1 m splits samples were submitted to the lab to define zones of mineralization within the composited intervals.

Quality of

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether
- Soil and rock samples collected for gold and base metal exploration are assayed using an aqua regia digest and are regarded to be a total digest enabling total values for target elements to be measured. Mobile Metal Ion (MMI) is a proprietary partial digest method where loosely bounded ions in soil particles goes into solution. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) technique is seen as the most cost effective technique for low level detection of gold and base metals.

Matsa Resources Limited

Commentary

acceptable levels of accuracy (ie lack of bias) and precision have been established.

- For KLGT01 composited aircore drill samples, samples were digested with aqua regia and analysed for gold using ICP-MS and 18 elements measured with ICP-AES (Tabulated in Appendix 3).
- For KLGT02 composited aircore drill samples, samples were digested with aqua regia and analysed for Au and 6 other elements using ICP-MS (Tabulated in Appendix 3).
- For the three RC holes, composite samples were digested with aqua regia and analysed for trace level Au using ICP-MS. 1m resplits of composite samples having $>0.1 \mathrm{~g} / \mathrm{t}$ gold were assayed using AAS for Au. Multi-element assay (35 elements) is by aqua regia digest and measured with ICP-AES (Tabulated in Appendix 3).
- For surface sampling and drill samples no QA QC samples have been inserted and reliance is placed on laboratory procedures.

Verification
of sampling
and
assaying

Location of

 data points- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.
- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
- Specification of the grid system used.
- Quality and adequacy of topographic control.
- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
- Whether sample compositing has been applied.

Orientation

- Whether the orientation of sampling achieves unbiased
- Soil samples are collected on a staggered grid in order to

Matsa Resources Limited

Criteria

Commentary

of data in relation to geological structure
sampling of possible structures and the extent to which this is known, considering the deposit type.

- If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.
minimize orientation bias.
- Aircore holes at KLGT01 are oriented at -60° due east which is nearly orthogonal to structure of the metasediment package. Drill traverses are oriented along EW lines.
- Vertical aircore drillholes at KLGT02 were oriented along EW lines which is at a high angle to the geological strike.
- The three RC drill holes are oriented at -60° and due NE. Trend of felsic porphyry sill strikes NW and dips steeply to the SW.
- Not regarded as an issue for soil samples and first pass aircore samples beyond clear mark up and secure packaging to ensure safe arrival and accurate handling by personnel at assay facility. Aircore residues retained in strong green plastic bags pending further sampling. Assay Pulps retained until final results have been evaluated.

Audits or reviews

- The results of any audits or reviews of sampling techniques and data.
- Orientation sampling overseen by geochemical consultants to ensure best practice.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation
Mineral	- Type, reference name/number, location and ownership tenement including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and tenure status
environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	
Exploration done by	- Acknowledgment and appraisal of exploration by other parties.

Commentary

- Cullen Exploration owns the tenements and Matsa has farmed in to the Killaloe Project and has earned 80% interest in the project after spending $\$ 500,000$ in exploration costs.
- The project consists of 2 ELs and 4 Prospecting licenses.
- The Project is Located on Vacant Crown Land.
- The project is located within Native Title Claim No. 99/002 by the Ngadju people.
- A heritage agreement has been signed and exploration is carried out within the terms of that agreement.
- At the time of writing these licenses expire between $14^{\text {th }}$ June 2013 and $8^{\text {th }}$ July 2017.
- Significant past work has been carried out by other parties for both Ni and Au exploration including, surface geochemical

Matsa Resources Limited

Commentary

other parties		sampling, ground electromagnetic surveys, RAB, aircore and RC drilling.
Geology	- Deposit type, geological setting and style of mineralisation.	- The target is gold in shear controlled mineralization close to a splay of the Zuleika Shear within a distinctive corridor of mafic volcanic, ultramafic and metasediments.

Matsa Resources Limited

Criteria	JORC Code explanation	Commentary
intercept lengths	- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	- Suitable summary plans have been included in the body of the report.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- Not required at this stage.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- Surface geochemical review by ioGlobal consultants to highlight Au targets. - Infill soil sampling by Matsa of several prospects to enhance previously identified gold anomalies. - Regional geochemical survey carried out by Matsa Resources comprising 146 samples mostly at 400 m centres on a staggered grid and infilled at $200 \mathrm{~m} \times 200 \mathrm{~m}$ intervals. The targets referred to in the report were partly defined by this work. - Field inspection of nickel targets defined from mapping and ground electromagnetic surveys.
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	- Geophysical review of the latest 100-m spaced aeromagnetic data of GSWA to enhance exploration targeting at Killaloe. - Further aircore drilling along KLGT02 to follow up on anomalous gold results. - Further RC drilling to define continuity of gold mineralization within the felsic porphyry host rock.

Appendix 2 - Drill Hole Locations and Orientations

Hole_ID	Hole_Type	Depth	Easting	Northing	RL	Dip	Azimuth	Target	Commodity
$13 \mathrm{KAC001}$	AC	4	396300	6467050	270	-90	0	KLGT02	Au
13KAC002	AC	33	396400	6467050	270	-90	0	KLGT02	Au
13KAC003	AC	23	396500	6467050	270	-90	0	KLGT02	Au
13KAC004	AC	12	396600	6467050	270	-90	0	KLGT02	Au
13KAC005	AC	45	396700	6467050	270	-90	0	KLGT02	Au
13KAC006	AC	24	396800	6467050	270	-90	0	KLGT02	Au
$13 \mathrm{KAC007}$	AC	8	396850	6467050	270	-90	0	KLGT02	Au
13KAC008	AC	11	396900	6467050	270	-90	0	KLGT02	Au
13KAC009	AC	12	396950	6467050	270	-90	0	KLGT02	Au
$13 \mathrm{KAC010}$	AC	23	397050	6467050	270	-90	0	KLGT02	Au
$13 \mathrm{KAC011}$	AC	60	397150	6467050	270	-90	0	KLGT02	Au
$13 \mathrm{KAC012}$	AC	39	397250	6467050	270	-90	0	KLGT02	Au
$13 \mathrm{KAC013}$	AC	13	397350	6467050	270	-90	0	KLGT02	Au
13KAC014	AC	12	397450	6467050	270	-90	0	KLGT02	Au
$13 \mathrm{KAC015}$	AC	26	397550	6467050	270	-90	0	KLGT02	Au
$13 \mathrm{KAC016}$	AC	24	397650	6467050	270	-90	0	KLGT02	Au
$13 \mathrm{KAC017}$	AC	37	396850	6467450	270	-90	0	KLGT02	Au
$13 \mathrm{KAC018}$	AC	27	396950	6467450	270	-90	0	KLGT02	Au
$13 \mathrm{KAC019}$	AC	29	397000	6467450	270	-90	0	KLGT02	Au
13KACO20	AC	18	397050	6467450	270	-90	0	KLGT02	Au
$13 \mathrm{KAC021}$	AC	9	397099	6467450	270	-90	0	KLGT02	Au
$13 \mathrm{KACO22}$	AC	12	397199	6467450	270	-90	0	KLGTO2	Au
$13 \mathrm{KACO23}$	AC	14	397299	6467450	270	-90	0	KLGT02	Au
13KAC024	AC	18	397399	6467450	270	-90	0	KLGT02	Au
13KAC025	AC	17	397499	6467450	270	-90	0	KLGT02	Au
$13 \mathrm{KAC026}$	AC	12	397599	6467450	270	-90	0	KLGT02	Au
$13 \mathrm{KAC027}$	AC	47	397699	6467450	270	-90	0	KLGT02	Au
$13 \mathrm{KACO28}$	AC	15	397151	6467655	270	-90	0	KLGT02	Au
13KACO29	AC	6	397201	6467655	270	-90	0	KLGT02	Au
13KAC030	AC	5	397251	6467655	270	-90	0	KLGT02	Au
13KAC031	AC	20	397300	6467655	270	-90	0	KLGT02	Au
$13 \mathrm{KAC032}$	AC	21	397350	6467655	270	-90	0	KLGT02	Au
13KAC033	AC	6	397450	6467655	270	-90	0	KLGT02	Au
13KAC034	AC	24	397550	6467655	270	-90	0	KLGT02	Au
13KAC035	AC	35	397650	6467655	270	-90	0	KLGT02	Au
13KLAC001	AC	36	402399	6468099	273	-60	90	KLGT01	Au
13KLAC002	AC	28	402457	6468095	270	-60	90	KLGT01	Au
13KLAC003	AC	24	402502	6468100	277	-60	90	KLGT01	Au
13KLAC004	AC	18	402553	6468100	278	-60	90	KLGT01	Au
13KLAC005	AC	30	402603	6468098	277	-60	90	KLGT01	Au
13KLAC006	AC	29	402653	6468092	280	-60	90	KLGT01	Au
13KLAC007	AC	27	402697	6468097	280	-60	90	KLGT01	Au
13KLAC008	AC	30	402743	6468094	282	-60	90	KLGT01	Au
13KLAC009	AC	39	402449	6467700	275	-60	90	KLGT01	Au
13KLAC010	AC	30	402501	6467696	275	-60	90	KLGT01	Au
13KLAC011	AC	26	402553	6467694	280	-60	90	KLGT01	Au
13KLAC012	AC	34	402600	6467700	279	-60	90	KLGT01	Au
13KLAC013	AC	71	402651	6467701	279	-60	90	KLGT01	Au
13KLAC014	AC	59	402702	6467695	278	-60	90	KLGT01	Au
13KLAC015	AC	54	402748	6467698	280	-60	90	KLGT01	Au
13KLAC016	AC	25	402498	6467300	278	-60	90	KLGT01	Au
13KLAC017	AC	18	402551	6467296	276	-60	90	KLGT01	Au
13KLAC018	AC	16	402598	6467300	279	-60	90	KLGT01	Au
13KLAC019	AC	14	402655	6467290	280	-60	90	KLGT01	Au
13KLAC020	AC	15	402690	6467290	276	-60	90	KLGT01	Au
13KLRC001	RC	120	398437	6464879	280	-60	40	GossanE/Felsic porphyry	Au
13KLRC004	RC	120	397613	6465811	287	-60	35	GossanE/Felsic porphyry	Au
13KLRC005	RC	120	398324	6464973	289	-60	40	GossanE/Felsic porphyry	Au
13KC026a	RC	161	405229	6455469	344	-60	234.5	KC26 EM conductor	Ni
$13 \mathrm{KC031}$	RC	220	406652	6454738	332	-60	54.5	KC31 EM conductor	Ni
$13 \mathrm{KC050}$	RC	114	399511	6462695	337	-60	54.5	KC50 EM conductor	Ni
$13 \mathrm{KC058}$	RC	220	399094	6463591	374	-60	54.5	Anomaly 58 EM conductor	Ni
$13 \mathrm{KC059}$	RC	160	402481	6459895	302	-60	54.5	Beetroot East EM conductor	Ni

Appendix 3 -4m Composite Assays

Hole ID	mFrom	mTo	Hole Type	Sample Type	Au_ppb	Ag_ppm	As_ppm	Co_ppm	Cu_ppm	Ni_ppm	Pb_ppm	Zn_ppm
13KAC001	3	4	AC	CHIPS	14	-0.05	n/a	65.7	71.5	296.2	5	114
$13 \mathrm{KAC002}$	3	4	AC	CHIPS	11	0.13	n/a	18.1	44.5	99.1	4	38
$13 \mathrm{KAC002}$	4	8	AC	COMP	12	0.08	n/a	13.8	72.1	48.9	9	58
$13 \mathrm{KAC002}$	8	12	AC	COMP	13	0.06	n/a	29.7	141.4	230.8	4	176
$13 \mathrm{KAC002}$	12	16	AC	COMP	11	0.12	n/a	43.8	49.9	339.9	2	54
$13 \mathrm{KACOO2}$	16	20	AC	COMP	14	0.08	n/a	56.4	58.4	444.7	2	41
$13 \mathrm{KAC002}$	20	24	AC	COMP	3	0.08	n/a	56.9	48	508.2	-1	21
$13 \mathrm{KAC002}$	24	28	AC	COMP	10	0.08	n/a	69.2	44.1	607	-1	17
$13 \mathrm{KAC002}$	28	32	AC	COMP	148	0.12	n/a	82.9	42.2	798.2	1	19
$13 \mathrm{KAC002}$	32	33	AC	CHIPS	38	0.14	n/a	79.5	94.2	776	1	17
$13 \mathrm{KAC003}$	3	4	AC	CHIPS	6	-0.05	n/a	46.9	11.7	352.1	-1	17
$13 \mathrm{KAC003}$	4	8	AC	COMP	3	0.09	n/a	54.9	24.4	317.5	-1	18
$13 \mathrm{KAC003}$	8	12	AC	COMP	1	0.08	n/a	43.9	36.6	179.8	-1	23
$13 \mathrm{KAC003}$	12	16	AC	COMP	10	-0.05	n/a	19.6	12.1	82.8	-1	29
$13 \mathrm{KAC003}$	16	20	AC	COMP	9	0.1	n/a	16.2	45.3	59.8	-1	22
$13 \mathrm{KAC003}$	20	23	AC	COMP	29	0.06	n/a	17.7	24.9	58.1	-1	25
$13 \mathrm{KAC004}$	3	4	AC	CHIPS	1	-0.05	n/a	25.5	26.2	65.9	-1	41
$13 \mathrm{KAC004}$	4	8	AC	COMP	2	-0.05	n/a	22.6	35.2	55.9	-1	42
$13 \mathrm{KACO04}$	8	12	AC	COMP	25	0.09	n/a	26.3	32.8	88.5	-1	52
$13 \mathrm{KAC005}$	2	4	AC	COMP	1	0.06	n/a	8.9	76.4	26.8	1	34
$13 \mathrm{KAC005}$	4	8	AC	COMP	4	-0.05	n/a	16.8	73.9	37.8	1	46
$13 \mathrm{KAC005}$	8	12	AC	COMP	-1	0.05	n/a	68.7	335.9	210.2	1	398
$13 \mathrm{KAC005}$	12	16	AC	COMP	1	0.06	n/a	45.8	196.2	110.9	4	169
$13 \mathrm{KAC005}$	16	20	AC	COMP	3	-0.05	n/a	17.8	164.7	58.8	4	113
$13 \mathrm{KAC005}$	20	24	AC	COMP	3	0.05	n/a	14.8	87.4	42.1	5	98
$13 \mathrm{KAC005}$	24	28	AC	COMP	3	-0.05	n/a	19.2	74	118.6	2	78
$13 \mathrm{KAC005}$	28	32	AC	COMP	12	-0.05	n/a	75.4	68.3	468.6	2	353
$13 \mathrm{KAC005}$	32	36	AC	COMP	9	0.09	n/a	50.3	20.4	278.1	-1	168
$13 \mathrm{KAC005}$	36	40	AC	COMP	73	0.11	n/a	62.6	50.8	302.1	1	77
$13 \mathrm{KAC005}$	40	44	AC	COMP	332	0.14	n/a	67.9	105.5	282.3	4	93
$13 \mathrm{KAC005}$	44	45	AC	CHIPS	16	0.26	n/a	77.5	183.3	244.9	1	121
13 KACO 06	3	4	AC	CHIPS	8	0.09	n/a	50.2	37.3	652.6	-1	1060
$13 \mathrm{KAC006}$	4	8	AC	COMP	6	0.06	n/a	34.7	30	510.7	-1	688
$13 \mathrm{KAC006}$	8	12	AC	COMP	7	-0.05	n/a	45.5	43.4	464.1	-1	1130
$13 \mathrm{KAC006}$	12	16	AC	COMP	7	0.13	n/a	42	61.1	90.2	-1	635
$13 \mathrm{KAC006}$	16	20	AC	COMP	6	0.61	n/a	49.9	524.5	110.5	17	381
$13 \mathrm{KAC006}$	20	24	AC	COMP	10	1.21	n/a	55.9	468.4	131	64	433
$13 \mathrm{KAC007}$	3	4	AC	CHIPS	1	-0.05	n/a	28.8	20	433.5	-1	51
$13 \mathrm{KAC007}$	4	8	AC	COMP	7	0.17	n/a	55.5	76.9	703.7	1	31
$13 \mathrm{KAC008}$	3	4	AC	CHIPS	3	-0.05	n/a	54.5	42.4	524	-1	75
$13 \mathrm{KAC008}$	4	8	AC	COMP	8	-0.05	n/a	50.7	46.1	665.7	-1	67
$13 \mathrm{KAC008}$	8	11	AC	COMP	9	-0.05	n/a	47.4	41	596.2	-1	62
$13 \mathrm{KAC009}$	3	4	AC	CHIPS	3	-0.05	n/a	51.2	39.2	1035.1	-1	51
$13 \mathrm{KAC009}$	4	8	AC	COMP	-1	-0.05	n/a	50.7	23.9	1152.8	-1	37
$13 \mathrm{KAC009}$	8	12	AC	COMP	2	-0.05	n/a	57.8	30	932.3	-1	37
$13 \mathrm{KAC010}$	3	4	AC	CHIPS	3	-0.05	n/a	61.7	40.3	804.4	-1	81
$13 \mathrm{KAC010}$	4	8	AC	COMP	2	-0.05	n/a	54.4	45.4	852	-1	61
$13 \mathrm{KAC010}$	8	12	AC	COMP	3	0.11	n/a	56.6	37	841.1	-1	63
$13 \mathrm{KAC010}$	12	16	AC	COMP	3	0.1	n/a	61.5	44.2	884	-1	70
$13 \mathrm{KAC010}$	16	20	AC	COMP	-1	0.09	n/a	60.5	78.3	688.8	-1	83
$13 \mathrm{KAC010}$	20	23	AC	COMP	-1	0.05	n/a	64.4	29.5	1163	-1	52
$13 \mathrm{KAC011}$	2	4	AC	COMP	2	-0.05	n/a	30.2	19	657.1	-1	22
$13 \mathrm{KAC011}$	4	8	AC	COMP	5	-0.05	n/a	46.9	27.3	1052.8	-1	21
$13 \mathrm{KAC011}$	8	12	AC	COMP	3	0.06	n/a	61.9	46.1	1001.6	-1	33
$13 \mathrm{KAC011}$	12	16	AC	COMP	4	-0.05	n/a	55.8	32.8	974.3	2	27
$13 \mathrm{KAC011}$	16	20	AC	COMP	2	-0.05	n/a	59.2	39	1097.1	-1	31
$13 \mathrm{KAC011}$	20	24	AC	COMP	4	0.06	n/a	60.4	44.7	1053.2	1	30
$13 \mathrm{KAC011}$	24	28	AC	COMP	3	-0.05	n/a	61.6	32.2	936.4	1	32
$13 \mathrm{KAC011}$	28	32	AC	COMP	6	0.06	n/a	77.5	53.3	1474.3	-1	34
$13 \mathrm{KAC011}$	32	36	AC	COMP	7	-0.05	n/a	58.7	33.2	1001.6	1	34
$13 \mathrm{KAC011}$	36	40	AC	COMP	3	-0.05	n/a	52.7	39.4	875.8	-1	33
$13 \mathrm{KAC011}$	40	44	AC	COMP	7	0.05	n/a	70.5	50.7	1041.1	-1	41
$13 \mathrm{KAC011}$	44	48	AC	COMP	2	0.05	n/a	68.8	42.1	1018.6	-1	35
$13 \mathrm{KAC011}$	48	52	AC	COMP	1	-0.05	n/a	61.8	67.4	967.9	1	34
13KAC011	52	56	AC	COMP	-1	0.06	n/a	61.6	62.1	1023.7	3	33
$13 \mathrm{KAC011}$	56	60	AC	COMP	6	0.06	n/a	60.4	39.1	746	-1	33
$13 \mathrm{KAC012}$	3	4	AC	CHIPS	7	-0.05	n/a	59.8	58.3	829.1	6	28
$13 \mathrm{KAC012}$	4	8	AC	COMP	9	0.08	n/a	70.3	45.7	1007.5	5	46
$13 \mathrm{KAC012}$	8	12	AC	COMP	2	0.05	n/a	55.4	18.2	549.6	-1	50
$13 \mathrm{KAC012}$	12	16	AC	COMP	75	0.08	n/a	72.4	44.3	878.6	2	62
$13 \mathrm{KAC012}$	16	20	AC	COMP	5	0.06	n/a	57.1	45.7	608.9	-1	32

$13 \mathrm{KAC012}$	20	24	AC	COMP	15	0.07	n / a	59.9	59.2	602.7	2	46
$13 \mathrm{KAC012}$	24	28	AC	COMP	6	-0.05	n/a	46.9	24	576.6	2	34
$13 \mathrm{KAC012}$	28	32	AC	COMP	1	-0.05	n / a	69.9	30.9	1486.1	2	26
$13 \mathrm{KAC012}$	32	36	AC	COMP	3	-0.05	n / a	67.6	40.5	1420.2	-1	18
$13 \mathrm{KAC012}$	36	39	AC	COMP	-1	0.06	n / a	66.1	37.8	1491.8	-1	19
$13 \mathrm{KAC013}$	2	4	AC	COMP	1	0.24	n / a	65.7	61.8	786.6	1	67
$13 \mathrm{KAC013}$	4	8	AC	COMP	7	0.16	n/a	68.6	50.5	1084.1	2	36
$13 \mathrm{KAC013}$	8	12	AC	COMP	-1	0.06	n / a	51.7	30.2	757.9	1	52
$13 \mathrm{KAC013}$	12	13	AC	COMP	-1	0.12	n / a	30	3.7	150.1	29	120
$13 \mathrm{KAC014}$	3	4	AC	CHIPS	-1	-0.05	n/a	51.6	14.5	1245.8	-1	37
$13 \mathrm{KAC014}$	4	8	AC	COMP	6	-0.05	n / a	48.2	25.6	1082.4	-1	24
$13 \mathrm{KAC014}$	8	12	AC	COMP	6	0.06	n / a	58.9	45.5	883.7	1	30
$13 \mathrm{KAC015}$	3	4	AC	CHIPS	6	-0.05	n / a	36.1	19.3	1023.6	-1	36
$13 \mathrm{KAC015}$	4	8	AC	COMP	9	-0.05	n / a	56.1	38.4	1197.3	2	44
$13 \mathrm{KAC015}$	8	12	AC	COMP	8	-0.05	n/a	45.2	46.1	958.3	-1	45
$13 \mathrm{KAC015}$	12	16	AC	COMP	5	0.16	n / a	38.1	88.8	510.8	58	125
$13 \mathrm{KAC015}$	16	20	AC	COMP	20	0.54	n / a	44.5	120.8	118.1	223	198
$13 \mathrm{KAC015}$	20	24	AC	COMP	8	0.16	n/a	63.1	72.1	882.9	71	114
$13 \mathrm{KAC015}$	24	26	AC	COMP	-1	-0.05	n / a	64.1	36.7	1124.4	7	52
$13 \mathrm{KAC016}$	3	4	AC	CHIPS	4	-0.05	n / a	55.5	31.1	919.9	-1	48
$13 \mathrm{KAC016}$	4	8	AC	COMP	2	-0.05	n / a	59.7	27	844.2	-1	52
$13 \mathrm{KAC016}$	8	12	AC	COMP	1	0.15	n / a	69.6	43.7	883.5	-1	44
$13 \mathrm{KAC016}$	12	16	AC	COMP	3	0.05	n/a	74.7	45.5	1104.2	-1	59
$13 \mathrm{KAC016}$	16	20	AC	COMP	9	-0.05	n/a	63.7	45.4	881.3	1	56
$13 \mathrm{KAC016}$	20	24	AC	COMP	18	0.11	n / a	50.6	34.1	733.4	1	25
$13 \mathrm{KAC017}$	3	4	AC	CHIPS	-1	0.05	n/a	157.1	105.8	3929.3	-1	411
$13 \mathrm{KAC017}$	4	8	AC	COMP	2	-0.05	n / a	159.2	84.9	4083.9	2	329
$13 \mathrm{KAC017}$	8	12	AC	COMP	6	-0.05	n / a	130.1	136.5	2872.8	2	359
$13 \mathrm{KAC017}$	12	16	AC	COMP	13	-0.05	n / a	80.8	100	1806.3	3	578
$13 \mathrm{KAC017}$	16	20	AC	COMP	17	-0.05	n / a	106.4	151.7	2252.9	5	688
$13 \mathrm{KAC017}$	20	24	AC	COMP	16	-0.05	n / a	100.8	133.9	1764.5	9	680
$13 \mathrm{KAC017}$	24	28	AC	COMP	4	0.25	n / a	126.6	90.2	1603.2	22	287
$13 \mathrm{KAC017}$	28	32	AC	COMP	-1	0.11	n / a	73.2	132.8	1023.8	10	366
$13 \mathrm{KAC017}$	32	36	AC	COMP	1	0.19	n/a	123.8	175.9	1899.5	13	882
$13 \mathrm{KAC017}$	36	37	AC	CHIPS	3	0.14	n / a	107.1	225.4	1786.5	3	615
$13 \mathrm{KAC018}$	3	4	AC	CHIPS	3	0.06	n / a	49.5	36.6	1011.3	1	43
$13 \mathrm{KAC018}$	4	8	AC	COMP	-1	0.06	n / a	57.9	38.5	983.3	-1	37
$13 \mathrm{KAC018}$	8	12	AC	COMP	6	0.05	n / a	62	35.4	1072.4	-1	41
$13 \mathrm{KAC018}$	12	16	AC	COMP	14	0.07	n / a	71.3	39.2	1181.6	1	43
$13 \mathrm{KAC018}$	16	20	AC	COMP	8	0.07	n/a	81	46.3	1297.3	-1	53
$13 \mathrm{KAC018}$	20	24	AC	COMP	3	0.08	n / a	81.7	57.3	1349.3	-1	51
$13 \mathrm{KAC018}$	24	27	AC	COMP	2	0.06	n/a	75.9	32.1	1196.3	-1	48
$13 \mathrm{KAC019}$	3	4	AC	CHIPS	1	0.05	n / a	56.7	32.5	832.1	-1	59
$13 \mathrm{KAC019}$	4	8	AC	COMP	2	0.07	n / a	52.2	49.9	882.1	-1	58
$13 \mathrm{KAC019}$	8	12	AC	COMP	1	0.08	n / a	49.9	47	943.3	-1	34
$13 \mathrm{KAC019}$	12	16	AC	COMP	-1	0.1	n / a	74.7	48.5	1158.6	-1	39
$13 \mathrm{KAC019}$	16	20	AC	COMP	1	0.1	n / a	66.5	80	1357.5	2	45
$13 \mathrm{KAC019}$	20	24	AC	COMP	-1	0.07	n / a	63.2	11.3	709.8	2	127
$13 \mathrm{KAC019}$	24	28	AC	COMP	6	0.22	n / a	37.3	59.2	358	6	111
$13 \mathrm{KAC019}$	28	29	AC	CHIPS	-1	-0.05	n / a	37.1	-0.5	605.3	2	90
$13 \mathrm{KACO20}$	2	4	AC	COMP	-1	-0.05	n / a	42.7	30.8	767.9	3	41
$13 \mathrm{KACO20}$	4	8	AC	COMP	4	-0.05	n / a	54.2	33.5	945.9	-1	46
$13 \mathrm{KACO20}$	8	12	AC	COMP	2	-0.05	n / a	55.2	21.7	855.9	1	50
$13 \mathrm{KACO20}$	12	16	AC	COMP	1	0.23	n / a	70.1	65.9	950.4	1	67
$13 \mathrm{KACO20}$	16	18	AC	COMP	4	0.7	n / a	118.2	381.4	1552.2	3	155
$13 \mathrm{KACO21}$	3	4	AC	CHIPS	-1	-0.05	n / a	26.6	7	554.7	-1	41
13KAC021	4	8	AC	COMP	5	-0.05	n/a	50.5	18.6	838.6	2	40
13KAC021	8	9	AC	COMP	39	0.06	n/a	35.5	9.9	654.9	2	17
$13 \mathrm{KAC022}$	3	4	AC	CHIPS	6	-0.05	n / a	51.1	19.7	547.5	-1	78
$13 \mathrm{KACO22}$	4	8	AC	COMP	1	0.07	n / a	53.9	20.5	654.3	-1	64
$13 \mathrm{KACO22}$	8	12	AC	COMP	4	-0.05	n / a	51.1	18.9	628.4	-1	64
$13 \mathrm{KACO23}$	3	4	AC	CHIPS	8	-0.05	n / a	84.3	74.3	1351.7	-1	91
$13 \mathrm{KACO23}$	4	8	AC	COMP	6	-0.05	n / a	67.8	13.2	778.6	-1	72
$13 \mathrm{KACO23}$	8	12	AC	COMP	5	-0.05	n / a	63.3	36.4	779.8	-1	72
$13 \mathrm{KACO23}$	12	14	AC	COMP	1	-0.05	n/a	61.1	17.7	777.8	-1	67
$13 \mathrm{KACO24}$	3	4	AC	CHIPS	2	-0.05	n/a	35.3	42.8	338.6	-1	73
$13 \mathrm{KACO24}$	4	8	AC	COMP	-1	-0.05	n / a	33.5	48.1	310.7	-1	62
$13 \mathrm{KACO24}$	8	12	AC	COMP	3	-0.05	n/a	69.9	58.2	1153.9	13	74
13KAC024	12	16	AC	COMP	4	0.13	n / a	170.2	123.7	2683.3	2	94
$13 \mathrm{KACO24}$	16	18	AC	COMP	633	0.16	n/a	136.3	64.2	2008.3	4	179
$13 \mathrm{KACO25}$	3	4	AC	CHIPS	2	-0.05	n / a	48.9	88.5	312.3	2	74
$13 \mathrm{KACO25}$	4	8	AC	COMP	2	-0.05	n / a	44.8	50.6	280.8	2	64
$13 \mathrm{KAC025}$	8	12	AC	COMP	7	-0.05	n/a	29.5	39.6	182.2	2	44
$13 \mathrm{KACO25}$	12	16	AC	COMP	-1	0.12	n / a	54.4	75.9	328.9	4	76

$13 \mathrm{KACO25}$	16	17	AC	COMP	3	0.13	n/a	69.6	63.2	398.7	3	82
$13 \mathrm{KACO26}$	3	4	AC	CHIPS	9	-0.05	n/a	28.6	31.7	144	1	71
$13 \mathrm{KACO26}$	4	8	AC	COMP	14	-0.05	n/a	28.3	32.2	116.7	-1	61
$13 \mathrm{KAC026}$	8	12	AC	COMP	-1	-0.05	n/a	29.3	20.2	123.1	-1	59
$13 \mathrm{KACO27}$	3	4	AC	CHIPS	2	-0.05	n/a	22	49.2	142.7	2	60
$13 \mathrm{KAC027}$	4	8	AC	COMP	1	-0.05	n/a	33.3	51.1	177.4	4	72
$13 \mathrm{KAC027}$	8	12	AC	COMP	-1	-0.05	n/a	44.4	57.7	169.4	6	67
$13 \mathrm{KAC027}$	12	16	AC	COMP	1	0.05	n/a	32.6	62.1	233.8	5	100
$13 \mathrm{KAC027}$	16	20	AC	COMP	1	-0.05	n/a	30.2	59.3	180.5	4	89
$13 \mathrm{KACO27}$	20	24	AC	COMP	1	-0.05	n/a	24.5	69	134.1	4	71
$13 \mathrm{KAC027}$	24	28	AC	COMP	4	-0.05	n/a	19.7	53.2	135.8	3	97
$13 \mathrm{KACO27}$	28	32	AC	COMP	3	-0.05	n/a	13.5	39.2	61.6	3	47
$13 \mathrm{KACO27}$	32	36	AC	COMP	3	-0.05	n/a	21.1	62	111.8	2	81
13KAC027	36	40	AC	COMP	5	-0.05	n/a	85.7	53.7	316.6	2	111
$13 \mathrm{KAC027}$	40	44	AC	COMP	28	-0.05	n/a	47.6	67.2	148.3	3	103
$13 \mathrm{KAC027}$	44	47	AC	COMP	61	0.05	n/a	26.4	51.3	87.3	2	90
13KAC028	3	4	AC	CHIPS	1	-0.05	n/a	55.6	51.6	1295.6	1	132
13KACO28	4	8	AC	COMP	-1	0.06	n/a	82.2	46.8	1238.4	1	110
$13 \mathrm{KACO28}$	8	12	AC	COMP	9	0.11	n/a	88.1	72.6	1140.2	4	147
$13 \mathrm{KACO28}$	12	15	AC	COMP	7	0.11	n/a	78.4	63.2	1267.2	3	65
13KACO29	3	4	AC	CHIPS	18	0.11	n/a	89	210.3	1036.5	22	1379
13KAC029	4	6	AC	COMP	16	-0.05	n/a	82	88.3	826.7	4	886
$13 \mathrm{KACO30}$	3	5	AC	COMP	3	-0.05	n/a	49.1	45.9	341.5	7	103
13KAC031	3	4	AC	COMP	-1	-0.05	n/a	36.6	52.9	343.2	2	83
13KAC031	4	8	AC	COMP	10	-0.05	n/a	50.9	58	328	2	67
$13 \mathrm{KAC031}$	8	12	AC	COMP	1	-0.05	n/a	38.7	45	304.7	2	65
$13 \mathrm{KAC031}$	12	16	AC	COMP	8	0.05	n/a	41.5	68.1	315.1	9	56
13KAC031	16	20	AC	COMP	1	0.05	n/a	37.8	53.6	314.8	2	62
$13 \mathrm{KAC032}$	3	4	AC	CHIPS	2	-0.05	n/a	49.5	59.6	352.5	3	75
13 KACO 22	4	8	AC	COMP	3	-0.05	n/a	55.9	52.2	356.8	2	71
$13 \mathrm{KAC032}$	8	12	AC	COMP	7	-0.05	n/a	52.9	63.4	345.7	3	61
$13 \mathrm{KAC032}$	12	16	AC	COMP	4	-0.05	n/a	26.1	41.5	170.3	2	39
$13 \mathrm{KAC032}$	16	20	AC	COMP	9	0.09	n/a	37.4	66.2	264.1	4	68
$13 \mathrm{KAC032}$	20	21	AC	CHIPS	7	0.05	n/a	37.7	49.9	283.5	3	64
$13 \mathrm{KACO33}$	3	4	AC	CHIPS	-1	-0.05	n/a	32.2	39.3	154.2	-1	55
$13 \mathrm{KACO33}$	4	6	AC	COMP	1	-0.05	n/a	30.6	39.9	155.2	-1	53
13KAC034	3	4	AC	COMP	1	-0.05	n/a	79.7	76.8	353.5	-1	143
13KAC034	4	8	AC	COMP	-1	-0.05	n/a	82.3	70.6	284	1	126
13KAC034	8	12	AC	COMP	-1	0.09	n/a	75.8	71.4	149.7	1	110
13KAC034	12	16	AC	COMP	-1	-0.05	n/a	54.5	68.4	128.8	1	91
13KAC034	16	20	AC	COMP	5	0.06	n / a	73.7	67.4	172.9	-1	109
13KAC034	20	24	AC	COMP	9	-0.05	n/a	29.5	39.4	104.9	-1	84
13KAC035	3	4	AC	CHIPS	5	-0.05	n/a	150.4	118.7	504.7	7	85
13KAC035	4	8	AC	COMP	-1	-0.05	n/a	52.8	74.3	225.7	8	151
13KAC035	8	12	AC	COMP	4	-0.05	n/a	40.2	105.5	331.2	8	323
13KAC035	12	16	AC	COMP	-1	-0.05	n/a	56.8	86.1	414.6	5	503
13KAC035	16	20	AC	COMP	-1	-0.05	n/a	38.6	62.7	201.9	4	197
$13 \mathrm{KACO35}$	20	24	AC	COMP	12	-0.05	n/a	71.4	65.3	254	2	163
$13 \mathrm{KACO35}$	24	28	AC	COMP	-1	0.06	n/a	72.3	63.5	142.4	1	123
13KAC035	28	32	AC	COMP	4	0.05	n / a	70.9	52.4	117.3	1	107
13KAC035	32	35	AC	COMP	7	0.05	n/a	47.3	45.3	117.9	2	113
13KLAC001	0	4	AC	COMP	2	-0.2	14	6	20	29	6	18
13KLAC001	4	8	AC	COMP	1	-0.2	46	3	12	20	4	14
13KLAC001	8	12	AC	COMP	-1	-0.2	9	1	4	4	15	4
13KLAC001	12	16	AC	COMP	-1	-0.2	4	1	5	6	19	3
13KLAC001	16	20	AC	COMP	-1	-0.2	4	4	7	3	9	9
13KLAC001	20	24	AC	COMP	-1	-0.2	4	27	20	7	13	31
13KLAC001	24	28	AC	COMP	1	-0.2	2	18	19	14	12	128
13KLAC001	28	32	AC	COMP	3	-0.2	3	11	8	13	12	86
13KLAC001	32	36	AC	COMP	-1	-0.2	2	6	20	10	12	51
13KLAC002	0	4	AC	COMP	2	-0.2	10	6	19	29	6	19
13KLAC002	4	8	AC	COMP	-1	-0.2	26	1	5	9	2	8
13KLAC002	8	12	AC	COMP	-1	-0.2	8	2	9	7	1	10
13KLAC002	12	16	AC	COMP	1	-0.2	18	2	12	7	8	21
13KLAC002	16	20	AC	COMP	-1	-0.2	6	6	15	6	14	29
13KLAC002	20	24	AC	COMP	3	-0.2	2	6	11	9	12	58
13KLAC002	24	28	AC	COMP	-1	-0.2	4	12	12	12	19	103
13KLAC003	0	4	AC	COMP	1	-0.2	12	5	18	31	5	19
13KLAC003	4	8	AC	COMP	-1	-0.2	10	1	4	7	3	6
13KLAC003	8	12	AC	COMP	-1	-0.2	1	-1	3	2	6	1
13KLAC003	12	16	AC	COMP	-1	-0.2	1	-1	2	2	5	3
13KLAC003	16	20	AC	COMP	-1	-0.2	5	2	9	8	14	38
13KLAC003	20	24	AC	COMP	1	-0.2	3	5	12	10	18	69
13KLAC004	0	4	AC	COMP	1	-0.2	10	7	16	27	5	16

13KLAC004	4	8	AC	COMP	-1	-0.2	17	1	8	11	8	9
13KLAC004	8	12	AC	COMP	-1	-0.2	4	-1	2	3	4	3
13KLAC004	12	16	AC	COMP	1	-0.2	2	1	5	3	4	5
13KLAC004	16	18	AC	COMP	-1	-0.2	4	6	33	11	15	62
$13 \mathrm{KLAC005}$	0	4	AC	COMP	1	-0.2	9	6	15	28	6	15
13KLAC005	4	8	AC	COMP	-1	-0.2	17	2	8	17	2	10
13KLAC005	8	12	AC	COMP	-1	-0.2	7	1	4	5	1	4
13KLAC005	12	16	AC	COMP	-1	-0.2	7	1	7	7	3	5
13KLAC005	16	20	AC	COMP	-1	-0.2	20	3	51	19	7	37
13KLAC005	20	24	AC	COMP	3	-0.2	11	7	56	28	11	93
13KLAC005	24	28	AC	COMP	14	-0.2	7	20	62	41	4	221
13KLAC005	28	30	AC	COMP	1	-0.2	7	46	361	102	6	332
$13 \mathrm{KLAC006}$	0	4	AC	COMP	1	-0.2	8	7	17	32	6	17
13KLAC006	4	8	AC	COMP	1	-0.2	11	4	12	23	4	13
13KLAC006	8	12	AC	COMP	-1	-0.2	45	-1	44	5	11	58
13KLAC006	12	16	AC	COMP	-1	-0.2	27	-1	55	11	9	32
13KLAC006	16	20	AC	COMP	-1	-0.2	21	8	46	22	21	103
13KLAC006	20	24	AC	COMP	2	-0.2	9	3	17	14	20	54
13KLAC006	24	28	AC	COMP	-1	-0.2	4	3	9	14	24	58
13KLAC006	28	29	AC	CHIPS	4	-0.2	2	3	9	11	17	47
$13 \mathrm{KLAC007}$	0	4	AC	COMP	1	-0.2	7	9	27	35	6	17
$13 \mathrm{KLAC007}$	4	8	AC	COMP	-1	-0.2	22	6	20	28	4	15
13KLAC007	8	12	AC	COMP	-1	-0.2	16	4	36	27	21	40
13KLAC007	12	16	AC	COMP	-1	-0.2	7	7	24	35	19	60
13KLAC007	16	20	AC	COMP	-1	-0.2	6	5	26	28	18	76
13KLAC007	20	24	AC	COMP	-1	-0.2	13	6	24	31	13	86
13KLAC007	24	27	AC	COMP	-1	0.6	13	10	118	47	9	73
13KLAC008	0	4	AC	COMP	4	-0.2	8	7	20	35	6	16
$13 \mathrm{KLAC008}$	4	8	AC	COMP	2	-0.2	8	4	9	20	3	12
13KLAC008	8	12	AC	COMP	-1	-0.2	8	-1	5	2	8	2
13KLAC008	12	16	AC	COMP	-1	-0.2	7	1	22	5	2	22
13KLAC008	16	20	AC	COMP	1	-0.2	15	1	38	10	4	40
13KLAC008	20	24	AC	COMP	-1	-0.2	53	1	54	6	7	15
13KLAC008	24	28	AC	COMP	-1	-0.2	35	1	31	6	4	17
13KLAC008	28	30	AC	COMP	-1	4.1	37	277	1555	643	26	145
13KLAC009	0	4	AC	COMP	3	-0.2	8	7	20	38	6	19
13KLAC009	4	8	AC	COMP	1	-0.2	6	1	5	12	6	13
13KLAC009	8	12	AC	COMP	-1	-0.2	1	1	2	3	9	19
13KLAC009	12	16	AC	COMP	-1	-0.2	1	2	3	5	12	21
13KLAC009	16	20	AC	COMP	-1	-0.2	1	4	7	7	23	47
13KLAC009	20	24	AC	COMP	-1	-0.2	1	5	8	8	20	57
13KLAC009	24	28	AC	COMP	2	-0.2	3	6	8	11	14	70
13KLAC009	28	32	AC	COMP	4	-0.2	2	6	6	11	8	62
13KLAC009	32	36	AC	COMP	-1	-0.2	2	8	12	19	5	59
13KLAC009	36	39	AC	COMP	1	-0.2	2	8	15	16	10	58
$13 \mathrm{KLAC010}$	0	4	AC	COMP	2	-0.2	7	7	20	37	6	28
13KLAC010	4	8	AC	COMP	1	-0.2	4	2	5	11	3	8
$13 \mathrm{KLAC010}$	8	12	AC	COMP	-1	-0.2	1	-1	2	3	10	4
$13 \mathrm{KLAC010}$	12	16	AC	COMP	-1	-0.2	1	-1	1	1	21	4
$13 \mathrm{KLAC010}$	16	20	AC	COMP	-1	-0.2	-1	4	8	8	21	57
13KLAC010	20	24	AC	COMP	-1	-0.2	1	5	8	9	16	88
$13 \mathrm{KLACO10}$	24	28	AC	COMP	2	-0.2	1	4	6	8	10	50
$13 \mathrm{KLAC010}$	28	30	AC	COMP	15	-0.2	1	4	5	12	10	48
$13 \mathrm{KLAC011}$	0	4	AC	COMP	3	-0.2	7	-	25	43	8	24
13KLAC011	4	8	AC	COMP	-1	-0.2	7	2	6	14	5	10
$13 \mathrm{KLAC011}$	8	12	AC	COMP	-1	-0.2	9	2	9	8	14	13
13KLAC011	12	16	AC	COMP	-1	-0.2	3	3	7	8	15	31
13KLAC011	16	20	AC	COMP	-1	-0.2	2	3	6	10	14	35
13KLAC011	20	24	AC	COMP	-1	-0.2	1	5	5	13	12	45
13KLAC011	24	26	AC	COMP	1	-0.2	2	5	6	16	15	58
$13 \mathrm{KLAC012}$	0	4	AC	COMP	1	0.2	8	25	28	37	14	13
$13 \mathrm{KLAC012}$	4	8	AC	COMP	-1	-0.2	9	2	6	13	6	9
13KLAC012	8	12	AC	COMP	-1	-0.2	7	1	7	5	37	11
$13 \mathrm{KLAC012}$	12	16	AC	COMP	-1	-0.2	6	3	8	11	23	27
13KLAC012	16	20	AC	COMP	-1	-0.2	7	4	10	14	13	42
$13 \mathrm{KLAC012}$	20	24	AC	COMP	-1	-0.2	4	3	10	11	39	33
$13 \mathrm{KLAC012}$	24	28	AC	COMP	1	-0.2	5	3	14	10	20	56
13KLAC012	28	32	AC	COMP	3	-0.2	3	4	8	11	13	51
$13 \mathrm{KLAC012}$	32	34	AC	COMP	1	-0.2	4	5	8	18	13	95
13KLAC013	0	4	AC	COMP	3	-0.2	8	10	25	52	9	37
13KLAC013	4	8	AC	COMP	-1	-0.2	15	2	7	16	4	12
13KLAC013	8	12	AC	COMP	-1	-0.2	5	-1	3	3	5	8
13KLAC013	12	16	AC	COMP	-1	-0.2	6	1	5		10	9
13KLAC013	16	20	AC	COMP	-1	-0.2	4	-1	8	5	21	12

13KLAC013	20	24	AC	COMP	-1	-0.2	4	-1	2	4	58	5
13KLAC013	24	28	AC	COMP	-1	-0.2	1	-1	1	2	21	2
13KLAC013	28	32	AC	COMP	22	-0.2	11	10	21	14	11	2
13KLAC013	32	36	AC	COMP	2	-0.2	7	13	23	55	9	60
13KLAC013	36	40	AC	COMP	1	-0.2	5	19	23	27	18	24
13KLAC013	40	44	AC	COMP	3	0.2	8	55	19	128	77	324
13KLAC013	44	48	AC	COMP	-1	-0.2	8	36	12	81	34	284
13KLAC013	48	52	AC	COMP	1	-0.2	19	43	13	69	24	145
13KLAC013	52	56	AC	COMP	1	-0.2	8	50	12	127	21	403
13KLAC013	56	60	AC	COMP	-1	-0.2	5	35	16	113	17	358
13KLAC013	60	64	AC	COMP	-1	-0.2	7	15	11	31	14	127
13KLAC013	64	68	AC	COMP	1	-0.2	13	17	14	28	12	105
13KLAC013	68	71	AC	COMP	1	-0.2	11	21	17	38	22	160
13KLAC014	0	4	AC	COMP	2	-0.2	8	12	25	57	9	39
13KLAC014	4	8	AC	COMP	1	-0.2	13	4	12	31	4	19
13KLAC014	8	12	AC	COMP	-1	-0.2	9	-1	2	3	4	5
13KLAC014	12	16	AC	COMP	1	-0.2	8	1	2	4	36	6
13KLAC014	16	20	AC	COMP	1	-0.2	5	-1	2	3	22	2
13KLAC014	20	24	AC	COMP	1	-0.2	3	-1	2	3	13	2
13KLAC014	24	28	AC	COMP	1	-0.2	2	-1	2	4	9	2
13KLAC014	28	32	AC	COMP	1	-0.2	3	-1	1	2	6	2
13KLAC014	32	36	AC	COMP	3	0.4	20	14	34	34	10	3
13KLAC014	36	40	AC	COMP	1	2.2	70	52	22	106	19	63
13KLAC014	40	44	AC	COMP	2	-0.2	148	28	31	116	25	11
13KLAC014	44	48	AC	COMP	1	-0.2	32	32	34	86	26	214
13KLAC014	48	52	AC	COMP	1	-0.2	20	20	22	65	24	382
13KLAC014	52	56	AC	COMP	1	-0.2	12	13	13	40	19	190
13KLAC014	56	59	AC	COMP	1	-0.2	28	15	17	74	16	248
13KLAC015	0	4	AC	COMP	2	-0.2	8	9	19	36	7	18
13KLAC015	4	8	AC	COMP	-1	-0.2	12	2	8	13	3	8
13KLAC015	8	12	AC	COMP	1	-0.2	2	-1	1	1	3	1
13KLAC015	12	16	AC	COMP	1	-0.2	3	-1	1	1	9	1
13KLAC015	16	20	AC	COMP	1	-0.2	5	-1	2	1	10	1
13KLAC015	20	24	AC	COMP	1	-0.2	7	-1	3	1	19	1
13KLAC015	24	28	AC	COMP	1	-0.2	3	-1	2	1	8	1
13KLAC015	28	32	AC	COMP	1	-0.2	6	-1	2	2	10	2
13KLAC015	32	36	AC	COMP	1	0.9	62	36	248	105	14	2
13KLAC015	36	40	AC	COMP	1	-0.2	53	51	29	126	35	133
13KLAC015	40	44	AC	COMP	1	-0.2	21	22	26	61	18	65
13KLAC015	44	48	AC	COMP	1	-0.2	12	22	24	63	21	377
13KLAC015	48	52	AC	COMP	1	-0.2	23	31	15	109	22	1205
13KLAC015	52	54	AC	COMP	1	-0.2	16	26	42	105	14	206
13KLAC016	0	4	AC	COMP	3	-0.2	6	8	17	37	6	18
$13 \mathrm{KLAC016}$	4	8	AC	COMP	-1	-0.2	2	3	4	8	27	28
13KLAC016	8	12	AC	COMP	-1	-0.2	1	4	5	8	23	47
13KLAC016	12	16	AC	COMP	-1	-0.2	1	6	7	11	7	50
13KLAC016	16	20	AC	COMP	-1	-0.2	1	6	9	10	17	53
13KLAC016	20	24	AC	COMP	4	-0.2	1	7	7	10	20	56
13KLAC016	24	25	AC	CHIPS	15	-0.2	1	5	6	10	26	38
13KLAC017	0	4	AC	CHIPS	2	-0.2	7	7	16	36	6	19
13KLAC017	4	8	AC	CHIPS	1	-0.2	6	1	3	5	2	5
13KLAC017	8	12	AC	CHIPS	-1	-0.2	5	1	3	3	3	9
13KLAC017	12	16	AC	CHIPS	-1	-0.2	3	2	4	4	10	30
$13 \mathrm{KLAC017}$	16	18	AC	CHIPS	-1	-0.2	2	4	7	8	13	49
13KLAC018	0	4	AC	COMP	2	-0.2	7	7	17	39	6	21
13KLAC018	4	8	AC	COMP	1	-0.2	7	3	8	21	7	15
$13 \mathrm{KLAC018}$	8	12	AC	COMP	-1	-0.2	3	1	4	,	13	13
13KLAC018	12	16	AC	COMP	3	-0.2	2	4	6	7	29	27
13KLAC019	0	4	AC	COMP	2	-0.2	8	7	16	31	5	17
13KLAC019	4	8	AC	COMP	-1	-0.2	5	1	3	7	6	11
13KLAC019	8	12	AC	COMP	-1	-0.2	1	4	8	9	21	38
13KLAC019	12	14	AC	COMP	-1	-0.2	1	6	8	13	7	41
13KLACO20	0	4	AC	COMP	2	-0.2	7	10	19	36	7	29
$13 \mathrm{KLACO20}$	4	8	AC	COMP	1	-0.2	5	3	7	10	7	30
13KLACO20	8	12	AC	COMP	-1	-0.2	2	6	10	13	10	43
13KLACO20	12	15	AC	COMP	-1	-0.2	2	8	12	16	5	51
13KLRC001	0	4	RC	COMP	37	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	4	8	RC	COMP	299	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	8	12	RC	COMP	72	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	12	16	RC	COMP	287	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	16	20	RC	COMP	192	n/a	n / a					
13KLRC001	20	24	RC	COMP	355	n/a	n / a	n/a	n / a	n / a	n / a	n/a
13KLRC001	24	28	RC	COMP	287	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	28	32	RC	COMP	204	n/a	n/a	n/a	n/a	n / a	n/a	n/a

13KLRC001	32	36	RC	COMP	106	n/a						
13KLRC001	36	40	RC	COMP	115	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	40	44	RC	COMP	126	n / a	n / a	n/a	n/a	n / a	n/a	n / a
13KLRC001	44	48	RC	COMP	149	n/a						
13KLRC001	48	52	RC	COMP	1220	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	52	56	RC	COMP	10	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	56	60	RC	COMP	3	n/a						
13KLRC001	60	64	RC	COMP	8	n / a	n / a	n/a	n/a	n / a	n/a	n / a
13KLRC001	64	68	RC	COMP	8	n / a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	68	72	RC	COMP	23	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	72	76	RC	COMP	16	n / a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	76	80	RC	COMP	3	n/a						
13KLRC001	80	84	RC	COMP	2	n/a	n/a	n/a	n/a	n / a	n/a	n / a
13KLRC001	84	88	RC	COMP	5	n/a						
13KLRC001	88	92	RC	COMP	2	n/a						
13KLRC001	92	96	RC	COMP	6	n/a	n / a					
13KLRC001	100	104	RC	COMP	11	n / a	n/a	n/a	n/a	n / a	n/a	n / a
13KLRC001	104	108	RC	COMP	2	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	108	112	RC	COMP	2	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC001	112	116	RC	COMP	1	n/a						
13KLRC001	116	120	RC	COMP	2	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	0	4	RC	COMP	154	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	4	8	RC	COMP	48	n/a						
13KLRC004	8	12	RC	COMP	4	n / a	n / a	n / a	n/a	n / a	n / a	n / a
13KLRC004	12	16	RC	COMP	4	n / a	n / a	n / a	n/a	n / a	n / a	n/a
13KLRC004	16	20	RC	COMP	30	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	20	24	RC	COMP	1	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	24	28	RC	COMP	2	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	28	32	RC	COMP	1	n / a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	32	36	RC	COMP	1	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	36	40	RC	COMP	3	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	40	44	RC	COMP	13	n / a	n / a	n / a	n/a	n / a	n / a	n / a
13KLRC004	44	48	RC	COMP	1	n / a	n / a	n/a	n/a	n / a	n / a	n / a
13KLRC004	48	52	RC	COMP	2	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	52	56	RC	COMP	15	n / a	n / a	n/a	n/a	n / a	n / a	n/a
13KLRC004	56	60	RC	COMP	508	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	60	64	RC	COMP	3	n / a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	64	68	RC	COMP	1	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	68	72	RC	COMP	-1	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	72	76	RC	COMP	2	n / a	n / a	n / a	n/a	n / a	n / a	n / a
13KLRC004	76	80	RC	COMP	1	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	80	84	RC	COMP	1	n / a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	84	88	RC	COMP	6	n / a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	88	92	RC	COMP	12	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	92	96	RC	COMP	1	n / a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	96	100	RC	COMP	2	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	100	104	RC	COMP	1	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	104	108	RC	COMP	1	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC004	108	112	RC	COMP	1	n / a	n / a	n / a	n/a	n / a	n / a	n / a
13KLRC004	112	116	RC	COMP	1	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRCO04	116	120	RC	COMP	-1	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	0	4	RC	COMP	29	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	4	8	RC	COMP	42	n / a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	8	12	RC	COMP	215	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	12	16	RC	COMP	97	n/a						
13KLRC005	16	20	RC	COMP	140	n/a	n / a	n / a	n/a	n / a	n / a	n / a
13KLRC005	20	24	RC	COMP	230	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	24	28	RC	COMP	131	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	28	32	RC	COMP	6	n / a	n / a	n / a	n/a	n / a	n / a	n / a
13KLRC005	32	36	RC	COMP	69	n / a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	36	40	RC	COMP	88	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	40	44	RC	COMP	9	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	44	48	RC	COMP	1	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	48	52	RC	COMP	6	n / a						
13KLRC005	52	56	RC	COMP	58	n / a	n/a	n/a	n/a	n / a	n / a	n / a
13KLRC005	56	60	RC	COMP	11	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	60	64	RC	COMP	8	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	64	68	RC	COMP	22	n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	68	72	RC	COMP	40	n / a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	72	76	RC	COMP		n/a	n/a	n/a	n/a	n / a	n/a	n/a
13KLRC005	76	80	RC	COMP	2	n/a	n / a					
13KLRC005	80	84	RC	COMP	1	n / a						
13KLRC005	84	88	RC	COMP	-1	n / a	n/a	n/a	n/a	n / a	n/a	n / a
13KLRC005	88	92	RC	COMP	-1	n/a	n/a	n/a	n/a	n / a	n/a	n/a

Matsa Resources Limited

13KLRC005	92	96	RC	COMP	3	n / a	n/a					
13KLRC005	96	100	RC	COMP	-1	n/a	n/a	n / a	n / a	n/a	n / a	n/a
13KLRC005	100	104	RC	COMP	-1	n/a	n/a	n / a	n / a	n/a	n / a	n/a
13KLRC005	104	108	RC	COMP	2	n/a	n/a	n / a	n / a	n / a	n/a	n/a
13KLRC005	108	112	RC	COMP	-1	n/a	n/a	n / a	n / a	n / a	n / a	n/a
13KLRC005	112	116	RC	COMP	1	n/a	n/a	n / a	n / a	n / a	n / a	n/a
13KLRC005	116	120	RC	COMP	-1	n/a	n/a	n/a	n / a	n/a	n/a	n/a

Appendix 4 -4m Composite Assay Ranges

KLGT01

Element	Detection	Unit	\# of Samples	Min	Max
Au	1	ppb	163	-1	22
Ag	0.2	ppm	163	-0.2	4.1
As	1	ppm	163	-1	148
Ba	10	ppm	163	10	620
Bi	2	ppm	163	-2	-2
Ca	0.01	$\%$	163	-0.01	3.76
Cd	1	ppm	163	-1	1
Co	1	ppm	163	-1	277
Cr	1	ppm	163	5	364
Cu	1	ppm	163	1	1555

KLTGTO2

Element	Detection	Unit	\# of Samples	Min	Max
Au	1	ppb	196	-1	633
Ag	0.05	ppm	196	-0.05	1.21
Co	0.2	ppm	196	8.9	170.2
Cu	0.5	ppm	196	-0.5	524.5

Gossan E/Felsic Porphyry

Element	Detection	Unit	\# of Samples	Min	Max
Au	1	ppb	89	-1	1220

Appendix 5-1m Re-split Assays

Hole_ID	mFrom	mTo	Au_ppb	Ag_ppm	As_ppm	Co_ppm	Cu_ppm	Ni_ppm	Pb_ppm	Zn_ppm
13KLRC001	4	5	-10	-0.2	42	76	54	777	-2	54
13KLRC001	5	6	20	-0.2	23	64	110	748	-2	50
13KLRC001	6	7	940	-0.2	121	48	13	426	16	94
13KLRC001	7	8	-10	-0.2	8	3	29	28	15	26
13KLRC001	8	9	80	-0.2	25	5	11	41	22	31
13KLRC001	9	10	30	-0.2	22	2	3	17	16	40
13KLRC001	10	11	40	-0.2	17	2	3	14	16	33
13KLRC001	11	12	90	-0.2	30	2	4	15	18	37
13KLRC001	12	13	320	-0.2	25	2	7	13	18	33
13KLRC001	13	14	390	-0.2	35	1	7	18	17	38
13KLRC001	14	15	240	0.2	32	2	7	14	17	36
13KLRC001	15	16	120	-0.2	62	1	6	12	18	34
13KLRC001	16	17	110	-0.2	46	1	4	11	19	39
13KLRC001	17	18	510	-0.2	19	1	3	8	17	37
13KLRC001	18	19	140	-0.2	34	1	3	8	15	38
13KLRC001	19	20	170	0.2	58	1	5	11	19	43
13KLRC001	20	21	100	-0.2	45	1	5	9	17	37
13KLRC001	21	22	580	0.2	27	1	4	8	27	43
13KLRC001	22	23	110	-0.2	80	1	4	9	17	42
13KLRC001	23	24	120	-0.2	78	1	4	7	20	45
13KLRC001	24	25	190	-0.2	24	1	4	9	19	41
13KLRC001	25	26	170	-0.2	39	1	4	8	22	48
13KLRC001	26	27	150	-0.2	30	1	5	8	20	35
13KLRC001	27	28	410	-0.2	29	1	6	7	20	36
13KLRC001	28	29	230	0.2	37	1	5	8	23	47
13KLRC001	29	30	420	-0.2	60	1	5	7	15	36
13KLRC001	30	31	170	-0.2	59	1	5	7	14	39
13KLRC001	31	32	190	-0.2	17	1	4	6	16	42
13KLRC001	32	33	160	-0.2	10	1	4	6	17	38
13KLRC001	33	34	140	0.2	9	1	3	7	21	38
13KLRC001	34	35	10	-0.2	3	1	3	7	17	37
13KLRC001	35	36	10	-0.2	9	1	6	6	18	41
13KLRC001	36	37	20	-0.2	13	1	14	8	10	44
13KLRC001	37	38	100	0.2	16	1	9	11	60	46
13KLRC001	38	39	10	-0.2	9	1	9	9	15	46
13KLRC001	39	40	330	0.2	60	1	18	15	12	46
13KLRC001	40	41	-10	-0.2	16	1	8	9	6	39
13KLRC001	41	42	30	-0.2	20	2	20	10	17	43
13KLRC001	42	43	130	-0.2	8	1	6	7	12	32
13KLRC001	43	44	290	-0.2	12	1	3	7	14	34
13KLRC001	44	45	410	0.3	31	1	2	12	14	32
13KLRC001	45	46	250	-0.2	17	1	2	6	12	31
13KLRC001	46	47	80	-0.2	5	1	2	5	14	30
13KLRC001	47	48	30	-0.2	6	1	2	5	15	31
13KLRC001	48	49	7240	1.1	31	1	2	6	42	56
13KLRC001	49	50	180	-0.2	3	1	3	7	18	42
13KLRC001	50	51	50	-0.2	3	1	1	6	13	34
13KLRC001	51	52	20	-0.2	2	1	4	6	14	39
13KLRC004	0	1	10	-0.2	19	12	112	279	2	55
13KLRC004	1	2	10	-0.2	29	25	64	484	-2	82
13KLRC004	2	3	10	-0.2	62	62	33	1330	-2	59
13KLRC004	3	4	60	-0.2	78	67	34	1370	-2	46
13KLRC004	56	57	180	0.4	120	67	45	697	17	358
13KLRCO04	57	58	2740	2	39	31	202	265	70	197
13KLRC004	58	59	10	-0.2	87	68	67	611	-2	241
13KLRCOO4	59	60	10	-0.2	71	58	50	911	2	26
13KLRC005	7	8	120	-0.2	17	2	4	20	20	46
13KLRC005	8	9	200	0.2	24	2	6	16	50	74
13KLRC005	9	10	520	-0.2	28	2	6	16	18	46
13KLRC005	11	12	120	-0.2	59	2	10	11	25	40
13KLRC005	12	13	60	-0.2	66	2	11	14	25	35
13KLRC005	13	14	40	-0.2	44	2	8	14	24	44
13KLRC005	14	15	90	-0.2	44	2	8	15	24	45
13KLRCO05	15	16	120	-0.2	30	2	6	15	16	44
13KLRC005	16	17	70	-0.2	18	2	6	12	16	50
13KLRC005	17	18	180	-0.2	37	2	10	17	20	52
13KLRC005	18	19	140	-0.2	29	2	10	19	27	45
13KLRC005	19	20	180	-0.2	21	2	9	19	16	50
13KLRC005	20	21	150	-0.2	24	2	7	17	18	51
13KLRC005	21	22	230	-0.2	22	2	7	17	17	47

Matsa Resources Limited

$13 K L R C 005$	22	23	810	-0.2	25	2	7	20	17	50
$13 K L R C 005$	23	24	110	-0.2	27	2	3	17	28	43
$13 K L R C 005$	24	25	100	-0.2	32	1	5	17	25	35
$13 K L R C 005$	25	26	190	0.2	9	2	2	11	20	37
$13 K L R C 005$	26	27	240	-0.2	6	1	1	7	20	38
$13 K L R C 005$	27	28	30	-0.2	2	1	1	7	17	39

Appendix 6-1m Re-split Assay Ranges

Element	Detection	Unit	\# of Samples	Min	Max
Au	10	ppb	76	-10	7240
Ag	0.2	ppm	76	-0.2	2
Al	0.01	$\%$	76	0.21	3.9
As	2	ppm	76	2	121
B	10	ppm	76	-10	30
Ba	10	ppm	76	-10	140
Be	0.5	ppm	76	-0.5	-0.5
Bi	2	ppm	76	-2	2
Ca	0.01	$\%$	76	0.07	20.4
Cd	0.5	ppm	76	-0.5	0.8
Co	1	ppm	76	1	76
Cr	1	ppm	76	15	2260
Cu	1	ppm	76	1	202
Fe	0.01	$\%$	76	0.32	5.48
Ga	10	ppm	76	-10	10
Hg	1	ppm	76	-1	-1
K	0.01	$\%$	76	-0.01	0.41
La	10	ppm	76	-10	20

Element	Detection	Unit	\# of Samples	Min	Max
Mg	0.01	$\%$	76	0.03	13.65
Mn	5	ppm	76	26	893
Mo	1	ppm	76	-1	3
Na	0.01	$\%$	76	0.02	0.83
Ni	1	ppm	76	5	1370
P	10	ppm	76	10	380
Pb	2	ppm	76	-2	70
S	0.01	$\%$	76	0.01	0.17
Sb	2	ppm	76	-2	4
Sc	1	ppm	76	-1	11
Sr	1	ppm	76	3	620
Th	20	ppm	76	-20	-20
Ti	0.01	$\%$	76	-0.01	0.07
Tl	10	ppm	76	-10	-10
U	10	ppm	76	-10	-10
V	1	ppm	76	1	116
W	10	ppm	76	-10	60
Zn	2	ppm	76	26	358

