

ASX Announcement

17 October 2013

High Nickel Values Confirmed at Symons Hill SHG02

Highlights

- Assays from 1m aircore drill splits over SHG02 confirm high nickel values with new results up to 1.1% Ni
- Highlight of 1m @ 1.1% Ni within a 3m intercept of 0.98% Ni in SHAC040
- Previously announced 4m composite assays up to 0.68% Ni have been significantly improved and confirmed
- Individual assays greater than 0.8% Ni and up to 1.1% Ni were returned from 2 aircore holes on sections spaced 800m apart

Matsa Resources Limited ("Matsa" or "the Company" ASX:MAT) is pleased to advise that assay results from 88 split aircore samples from SHG02 have been received. Composite samples up to 4 metres in length containing greater than 0.1% Ni were resampled at 1m intervals. The aircore drilling programme and assay results from initial 4m composite samples were reported to the ASX on 25/9/2013 and 1/10/2013. Petrography of aircore samples was reported on 9/10/2013.

Executive Chairman Mr Poli said "these new results coupled with our past three announcements confirm the high prospectivity that Matsa has at Symons Hill. We continue to receive postive results and remain excited by the receipt of these encouraging results in fertile rocks. We are diligently working to commence further aircore, RC and diamond drilling in this hot spot as soon as possible. We continue to rate this area as highly prospective and are delighted by the support and keen interest that we are receiving from industry participants".

Exploration methodology, including the revised assay procedure for the 1m samples is described as required under the JORC 2012 guidelines and is included as Appendix 1.

CORPORATE SUMMARY

Executive Chairman Paul Poli

Director

Frank Sibbel

Director & Company Secretary Andrew Chapman

Shares on Issue

144.15 million

Unlisted Options 12.55 million @ \$0.31 - \$0.45

Top 20 shareholders

Hold 48%

Share Price on 16 October 2013

27.5 cents

Market Capitalisation

\$39.64 million

Key 1 metre Split Assay Results

Assays of 1m samples returned high grade nickel intercepts greater than 0.8% Ni in two drillholes, SHAC040 and SHAC067, located on drill traverses spaced 800m apart. It can be seen that highest Ni grades are situated close to the base of the saprolite profile above strongly nickel rich olivine bearing gabbro basement rocks. These Ni values are directly comparable with early near surface exploration results as reported over Nova-Bollinger. Highest values are listed below and presented as cross sections in Figures 2 and 3:

<u>SHAC040</u> **3m @ 0.98% Ni**, 0.005% Cu, 0.12% Co, 0.015ppm Pt, 0.005ppm Pd from 21m including: **1m @ 1.1% Ni**, 0.0035% Cu, 0.045% Co, 0.01ppm Pt, 0.006ppm Pd from 23m

<u>SHAC067</u> **1m @ 0.86% Ni**, 0.01% Cu, 0.023% Co, 0.024ppm Pt, 0.008ppm Pd from 40m

The nickel rich olivine bearing gabbro/mafic granulites underlying these intercepts were interpreted in the recently announced petrographic study, to be prospective for magmatic Ni-Cu sulphides and to be similar to host rocks at the nearby Nova-Bollinger discoveries.

Sampling and Assay Results

Bulk residues from all composite sample intervals containing greater than 0.1% Ni were resampled at 1m intervals for a total of 88 samples. Samples were assayed for a 36 element suite including Platinum and Palladium.

The assay procedure was slightly different for the split sample assays in that a 4 acid digest rather than an aqua regia digest was used. The 4 acid digest has produced a slight increase in assay values for Ni, Cu and Co compared to earlier composite assays. This is a consequence of the higher take – up of metal into solution by the 4 acid digest compared to the aqua regia digest. Consequently aggregate intercepts are slightly higher overall for split sample assays compared to the composites. For example the composite intercept for SHAC040 of 25m @ 0.26% Ni was reassayed as 25m @ 0.3% Ni (Figure 2 and 3) on split samples. This slight comparative difference has no material effect on the significance of the split sample assay results and is purely the result of changing to a more appropriate industry standard assay procedure (e.g. as used by Sirius Resources Limited).

Assay intervals and results are presented in Appendix 2 and assay ranges for each element are tabulated in Appendix 3. Assay ranges for selected elements are summarised in Table 1.

		Values							
Element_Unit	Samples	Minimum	Maximum						
Ni_ppm	88	460	11,050						
Cu_ppm	88	9	1,440						
Co_ppm	88	19	1,870						
Pt_ppb	88	<5	45						
Pd_ppb	88	1	49						
Cr_ppm	88	79	10,005						
S_ppm	88	100	5,000						
Au_ppb	88	<1	74						
Ag_ppm	88	<0.5	0.60						

Table 1: SHG02 1m Aircore Samples, Selected Assay Ranges

The location of drill holes selected for resampling is summarised in Figure 1 and revised cross sections are presented in Figures 2 and 3.

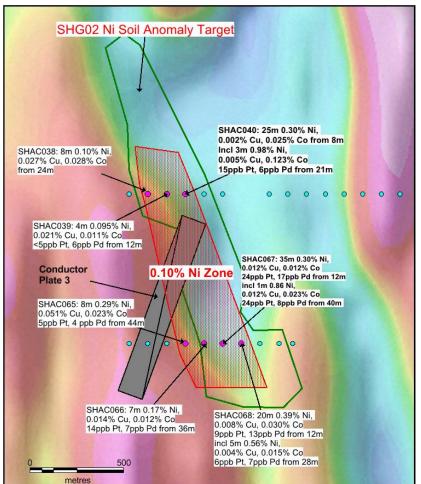
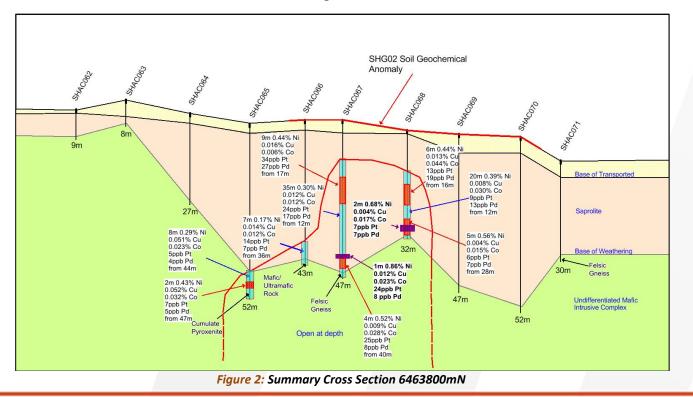



Figure 1: Target SHG02 Summary Assay Intercepts

High Ni intercepts can be seen to be located in variably weathered olivine rich gabbros which have been described as similar to the host rocks at Nova-Bollinger.

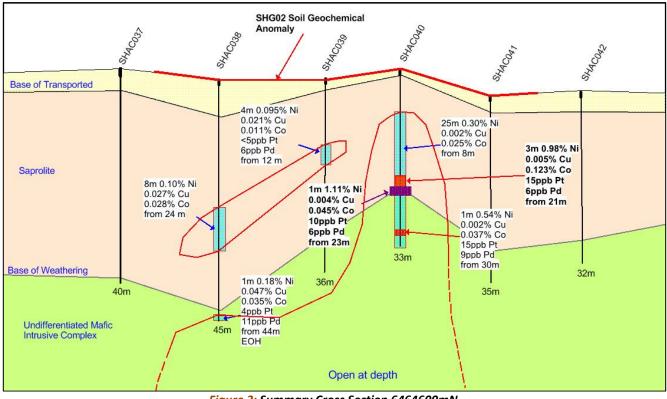


Figure 3: Summary Cross Section 6464600mN

Matsa is currently planning follow up aircore, RC and diamond drilling programmes, and downhole EM surveys to target magmatic sulphides at depth.

For further information, please contact:

Paul Poli Executive Cha	irman	Frank Sibbel Director
Phone Fax Email Web	+61 8 9230 3555 +61 8 9227 0370 reception@matsa.com <u>www.matsa.com.au</u>	n.au

Exploration results

The information in this report that relates to Exploration results, is based on information compiled by David Fielding, who is a Fellow of the Australasian Institute of Mining and Metallurgy. David Fielding is a full time employee of Matsa Resources Limited. David Fielding has sufficient experience which is relevant to the style of mineralisation and the type of ore deposit under consideration and the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. David Fielding consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1: Matsa Resources Limited Symons Hill Project JORC 2012 Table 1

containing Update on Sampling and Assay Procedure

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Soil Samples comprise approximately 300g of -1.5mm bulk soils collected between a depth of 10 and 30cm. Assay techniques such as Mobile Metal Ion (MMI) partial digest require that stainless steel shovel for digging and plastic trowel to scoop out soil is used to minimize sample contamination. Input from geochemical consultants eg ioGlobal Ltd has been sought from time to time to ensure that the size of sample is sufficient to ensure representivity of the soil mass being sampled. The target elements being sought are not present in coarse aggregates, coarse gold is not being targeted consequently 300g is sufficient for a representative sample From a sampling perspective the target is basement mineralization. Sampling procedures for total digest are focused on the clay fraction which captures and amplifies the geochemical response above basement mineralization. Sample procedures for MMI likewise target the amplified geochemical response associated with mobile ions of the target element.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Aircore Drilling carried out by Challenge Drilling. Vacuum Bit achieving accurate face sampling. Bit diameter 75-80mm.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recovery was not measured.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical 	 Visual logging carried out on washed cuttings. All washed cuttings were retained in boxes. Selected fresh bottom of hole samples selected for petrography. Logging recorded as qualitative description

Criteria	JORC Code explanation	Commentary
	 studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	of colour and lithological type.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples of 1-4m were composited for assay. The subsampling technique was carried out by hand spearing drill residues over specified intervals to achieve a final sample weight of around 3 kg. The opportunity exists to go back to individual splits as a check on composite assay values. Composite samples with results above 0.1% Ni were chosen for the 1m split sampling. Bulk residues of the bagged 1m interval were passed through a three-tier riffle splitter producing a 1-3kg sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Soil and rock samples collected for gold and base metal exploration are assayed using an aqua regia digest and are regarded to be a total digest enabling total values for target elements to be measured. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) technique is seen as the most cost effective technique for low level detection of gold and base metals. Inductively coupled plasma atomic emission spectrometry (ICP-AES) was also used to detect other elements such as Ca, Fe, K, etc. Precious metal (Au-Pd-Pt) determination is by 30g lead fire assay fusion and the resulting bead is digested in a three-stage acid process and measured using ICP-AES. For the 1m splits, four acid digestion was carried out and measured with ICP-AES. This technique was used to assay 4m composite samples from first pass aircore drilling 1m split samples were submitted to a 4 acid digest in order to maximize the take up of metal into solution. For surface sampling no QA QC samples have been inserted and reliance is placed on laboratory procedures. Samples submitted for base metal analysis are "validated" in the field by a prior assay using the Olympus Handhled XRF unit.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Not carried out because laboratory QA QC procedures are regarded as sufficient for surface samples and first pass aircore samples. Data entry carried out by field personnel thus minimizing transcription or other errors. Trial plots in field and rigorous database procedures ensure that field and assay data are merged accurately.

Criteria	JORC Code explanation	Commentary
Location of data points	 Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill collars are surveyed by modern hand held GPS units with an accuracy of 5m which is sufficient accuracy for the purpose of compiling and interpreting results. Topographic control 2-5m accuracy using published maps or Shuttle Radar data is sufficient to evaluate topographic effects on assay distribution.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Sample spacing is established using the largest spacing possible for a likely target footprint to minimize cost. Issues such as transported overburden which can blanket geochemistry response lead to a reduction in sample spacing. Aircore drillholes spacings were selected to achieve a first pass test of soil geochemical anomalies and to enable bedrock types to be characterized as a guide to a geologically driven exploration programme for Ni Sulphides.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Soil samples are collected on a staggered grid in order to minimize orientation bias. Vertical Aircore drillholes were oriented along EW lines which is at a high angle to the geological strike.
Sample security	The measures taken to ensure sample security.	 Not regarded as an issue for soil samples and first pass aircore samples beyond clear mark up and secure packaging to ensure safe arrival and accurate handling by personnel at assay facility. Aircore residues retained in strong green plastic bags pending further sampling. Assay Pulps retained until final results have been evaluated.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Orientation surface sampling overseen by geochemical consultants to ensure best practice. First pass assays with hand held xrf machine to gain impression of mineralization.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral</i> <i>tenement</i> <i>and land</i> <i>tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental 	 EL69/3070 which is owned 100% by Matsa Resources Ltd. Located on Vacant Crown Land The License intersects the buffer zones of the Fraser Range and Southern Hills PEC's Exploration to be managed in accordance with a

Criteria	JORC Code explanation	Commentary
	 settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Conservation Management Plan. The project is located within Native Title Claim by the Ngadju people. A heritage agreement has been signed and exploration is carried out within the terms of that agreement. At the time of writing the licence is granted for a 5 year period expiring on 6th March 2018
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Prior work carried out by GSWA in the form of wide spaced helicopter based soil sampling and acquisition of 400m line spacing magnetic and radiometric data. No previous exploration data has been reported.
Geology	• Deposit type, geological setting and style of mineralisation.	 The target is Nova style Ni Cu mineralization hosted in high grade mafic granulites of the Fraser Complex
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Co ordinates and other attributes of aircore drillholes are included in Appendix 2. Each drilling programme will be attached in this way as information becomes available.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Aggregation of downhole assay values for Ni Cu and Co were shown for intercepts containing >0.1% Ni. Intercepts were calculated by averaging length weighted intercept values for the three elements (usually 4m lengths). Raw un - aggregated Cu, Ni and Co values have been included in Appendix 2.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true 	All intercepts reported are measured in down hole metres.

Criteria	JORC Code explanation	Commentary
Diagrams	 width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of 	 Suitable summary plans have been included in the body of the report. A plan and two sections have been included to illustrate the results at SHG02
Balanced reporting	 drill hole collar locations and appropriate sectional views. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Not required at this stage
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Airborne VTEM (combined magnetic and electromagnetic) carried out in December 2012 by Geotech Airborne Pty Limited. A total of 6 priority targets and 15 second order targets identified and reported on by Southern Geoscience Consultants Ltd Prior to December 2012, Comprehensive geochemical survey carried out by Matsa Resources comprising 614 samples mostly at 400m centres on a staggered grid identified targets SH01 to SH05. Infill at 200m x 200m completed over targets SH01 to SH05 in May 2013 for a total of 638 samples. Ground EM carried out in May 2013 by Bushgum Holdings Pty Ltd, under supervision by Newexco consultants, consisting of both moving-loop (MLEM) and fixed-loop (FLEM) surveys. Data acquisition was achieved using a SMARTem24 8-channel geophysical receiver manufactured by ElectroMagnetic Imaging Technology (EMIT), Bartington 3-component magnetic field sensor (up to 1Hz frequency response) and a Zonge ZT-30 Loop Driver transmitter to power the loop with up to 30A. The MLEM and FLEM surveys are both 400m wide. In the MLEM, the survey lines are spaced 400m apart with receiving stations every 100m inside the loop along an E-W direction. In the FLEM, the receiving stations are 50m apart across 1 km traverse in an E-W direction.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further aircore drilling followed with RC and diamond drilling at Geochemical anomaly SHG02. Aircore drilling at other areas recommended by geophysical consultant. Geological mapping to commence in areas of bedrock exposure in the south of the tenement. Induced polarization (IP) geophysical surveys over geochemical targets SHG01 and SHG02.

Appendix 2: Aircore 1m Split Assay Ledger

A80401 ISHAG038 28 29 -0.5 6.5 -7.2 0.03 -0.5 26.1 1400 27.5 27.7 20 0.04 10 0.16 2160 A80403 ISSHAG08 30 31 -0.5 566 -5 -1 100 0.8 -2 0.02 -0.5 463 1000 361 41.1 10 0.03 20 0.07 2520 A80403 ISSHAG08 8 9 0.5 7.34 4.5 1 200 1.1 -2 0.03 -0.5 1.42 200 339 1.10 0.09 1.0 0.31 -7.4 0.03 3.11 -10 0.09 1.0 0.31 -7.4 0.01 1.42 200 0.5 1.42 200 0.5 1.45 1.01 1.0 0.5 2 0.02 0.5 1.44 1.00 1.01 1.55 3.01 1.02 1.55 1.01 1.03 3.7 4.		<u>г </u>								/ 00/		1		- - - -						1		
A88402 15844028 39 30 -0.5 5.50 -3.5 1380 301 301 10 0.4 10 0.1 190 A890401 15844028 30 13 22 0.2 -0.5 463 000 361 11 10 0.04 10 0.13 0.25 A800401 15844008 31 42 0.5 7.3 1.4 2 0.05 348 430 43 13 2.0 0.09 10 0.33 0.33 1.3 2.5 1.4 2.5 1.4 2.0 0.09 10 0.01 0.03 0.06 0.05 <	SAMPLE_ID	Hole_ID	mFrom	mTo	Ag_ppm	Al_pct	As_ppm	Au_ppb	Ba_ppm	Be_ppm	Bi_ppm	Ca_pct	Cd_ppm	Co_ppm	Cr_ppm	Cu_ppm	Fe_pct	Ga_ppm	K_pct	La_ppm	Mg_pct	Mn_ppm
A80401 139HAC028 30 31 cb 2 cb cl 80 13 cb cb 141 10 0.03 20 0.07 2520 A80404 138HAC038 44 45 cb 7.34 cb 1 2 0.03 cb 14 2 0.03 cb 14 2 0.03 cb 14 2 0.03 16 271 20 0.09 10 0.13 0.03 16 271 20 0.09 10 0.31 0.33 47 cl 50 cb 20 0.05 118 2510 43 13 cl 0.09 10 0.05 100 250 140 141 18 54 10 0.05 100 250 140 141 140 0.05 100 250 140 141 140 0.05 100 250 118 271 20 100 100 113 1	A80401	13SHAC038	28	29	<0.5	6.93	12	5	60	0.9	<2	0.03	<0.5	261	1480	275	29.7	20	0.04	10	0.16	2160
A800401 135HAC038 11 32 0.03 -0.5 142 2050 339 27.1 20 0.09 10 0.13 622 A80040 135HAC038 4 45 0.5 43 130 100 0.09 10 0.33 637 A80000 135HAC039 9 0.5 2.3 47 <10 0.4 50 40.5 42 0.01 4.3 13 100 0.09 100 0.33 637 A80000 135HAC040 0 11 40.5 42 0.02 40.5 18 2560 18 7.8 10 0.6 7.8 A80000 135HAC040 0 11 40.5 52 10 10 40.5 22 0.02 4.5 10 1.0 2.6 2.5 4.6 100 1.0 3.6 10 0.05 10 1.2 4.80 1.0 3.6 10 0.05 10 1.	A80402	13SHAC038	29	30	<0.5	5.06	<5	<1	110	0.8	<2	0.02	<0.5	355	1330	301	30.1	10	0.04	10	0.1	1940
A8000 13*MAC038 44 45 0.5 7 30 1.4 -2 0.05 -0.5 349 340 470 27.8 1.0 0.09 10 0.31 933 A80000 13*MAC030 9 10 0.5 2.34 100 -0.5 3.8 250 1.8 7.84 1.0 0.07 -10 0.34 884 A80040 13*MAC030 0.11 0.2 2.44 -41 500 -455 42 0.02 405 104 2800 1.8 7.84 100 0.07 100 0.41 820 -25 405 140 128 556 10 1.02 102 421 434 435 556 10 1.02 42 434 400 556 10 1.057 10 0.51 465 469 190 150 44 414 0.05 572 45 44 405 566 42 0.55 4	A80403	13SHAC038	30	31	<0.5	2.31	<5	<1	80	1.3	<2	0.02	<0.5	463	1000	361	41.1	10	0.03	20	0.07	2520
Ab0006 133HAC000 8 9 eto 5.24 100 eto 5.9 eto 5.9 eto 5.9 eto 10 eto 3.8 2510 43 13 eto 0.09 eto 0.39 181 AB0006 133HAC000 10 11 eto 5.8 2.002 eto 104 eto 3.8 cto 0.07 cto 0.39 181 AB0006 133HAC000 10 11 eto 5.7 6.00 5.7 2.022 eto 10.10 488 5.86 10 0.05 10 0.81 5.86 10 0.07 100 0.81 5.8 100 0.05 100 0.81 5.86 10 0.07 100 0.81 8.8 100 0.05 100 0.81 8.8 100 0.81 8.8 100 0.81 10 0.81 10 10.8 10.8 10.8 10.81 10.81 10.81 </td <td>A80404</td> <td>13SHAC038</td> <td>31</td> <td>32</td> <td><0.5</td> <td>7.34</td> <td><5</td> <td>1</td> <td>260</td> <td>1.1</td> <td>2</td> <td>0.03</td> <td><0.5</td> <td>142</td> <td>2050</td> <td>339</td> <td>27.1</td> <td>20</td> <td>0.09</td> <td>10</td> <td>0.13</td> <td>625</td>	A80404	13SHAC038	31	32	<0.5	7.34	<5	1	260	1.1	2	0.03	<0.5	142	2050	339	27.1	20	0.09	10	0.13	625
Abd007 133HAC040 9 10 -0.5 2.4 -0.1 -0.5 2.8 2560 18 7.83	A80405	13SHAC038	44	45	<0.5	4.3	5	7	30	1.4	<2	0.05	<0.5	349	1840	470	27.8	10	0.09	10	0.31	935
A80008 133HAC040 10 11 40.5 2.49 24 -1 300 -0.5 2 0.02 40.5 104 2630 31 7.44 <100 0.6. 79 A80040 133HAC040 20 21 <0.5	A80406	13SHAC040	8	9	<0.5	2.34	100	<1	30	<0.5	<2	0.02	<0.5	115	2510	43	13	<10	0.09	<10	0.39	181
A80409 139HaC040 11 12 -0.5 -4.5 100 -1.3 820 -0.5 -2 0.22 -0.5 144 1480 18 5.66 10 1.59 30 1.02 62 A80410 139HaC040 21 -0.5 7.6 30 150 1.2 -0.5 1870 1630 83 6.8 10 0.07 140 2.26 856 A80412 135HaC040 23 2.4 -0.5 5.36 <5	A80407	13SHAC040	9	10	<0.5	3.3	47	<1	50	<0.5	<2	0.01	<0.5	88	2560	18	7.83	<10	0.07	<10	0.54	68
A80410 138HACQ40 20 21 7.62 10 0.53 10 0.81 18 A80411 138HACQ40 22 24	A80408	13SHAC040	10	11	<0.5	2.49	24	<1	360	<0.5	<2	0.02	<0.5	104	2630	31	7.44	<10	0.45	10	0.6	
Abolii 133HACOM 21 22 cdo.5 8.70 1520 1630 83 6.8 10 0.07 140 2.26 8.560 Abolii 133HACOM 22 23 cdo.5 5.35 cdo 140 5.6 2.52 cdo.5 1380 1600 42 4.14 cdo 0.07 80 4.05 5060 Abolii 133HACOM 28 29 cdo.5 7.15 7 34 1530 0.6 c2 0.05 181 710 35 482 c10 0.43 30 2.56 111 Abolii 133HACOM 30 31 cdo.5 7.99 cdo 1.17 1.3 c2 0.02 0.55 191 751 193 356 10 4.43 30 2.26 8.50 Abolii 133HACOM 30 31 cdo.5 7.15 80 7.5 80 1.3 4.4 1.2 50 4.5	A80409	13SHAC040	11	12	<0.5	4.5	10	1	820	<0.5	<2	0.22	<0.5	104	1480	18	5.56	10	1.59	30	1.02	
A80412 135HAC040 22 23 24 0.5 74 540 98 -22 5.25 -0.5 1380 1600 42 4.14 -10 0.05 170 4.88 10600 A80141 135HAC040 28 29 -0.5 7.15 7 34 1530 0.6 -2 0.05 4.49 1110 55 70 0.112 948 A80415 135HAC040 28 0.05 7.09 <5	A80410	13SHAC040	20	21	<0.5	7.62	<5	19	110	<0.5	2	0.06	<0.5	46	1760	15	5.46	10	0.05	10	0.81	
AB0413 135HAC040 23 24 <0.5 5.35 <14 140 5.6 <2 0.73 <0.5 449 1110 35 482 <10 0.07 80 4.05 506 A80414 135HAC040 28 29 <0.5	A80411	13SHAC040	21	22	<0.5	8.57	<5	30	150	1.2	<2	0.52	<0.5	1870	1630	83	6.8	10	0.07	140	2.26	8560
Babel41 135HAC040 28 29 40.5 7.15 7 34 1530 0.6 -22 0.05 84 79 9 1.01 5.57 20 1.12 948 A80415 135HAC040 30 31 -0.5 7.4 4.0 0.12 -0.5 1.91 751 19 3.56 1.0 4.83 30 2.55 4.95 A80416 135HAC040 31 32 -0.5 7.9 <5	A80412	13SHAC040	22	23	<0.5	3.07	<5	74	540	9.8	<2	5.25	<0.5	1380	1600	42	4.14	<10	0.05	170	4.88	10600
AB0415 135HACO40 29 30 c.0.5 7.09 c.5 1 1710 1.3 c.2 0.12 c.0.5 367 390 2.36 10 4.83 30 2.65 1810 A80416 135HACO40 31 32 c.0.5 3.49 < c.1 1700 1.4 <2 0.49 3.67 310 2.3 c.10 0.43 30 3.25 4950 A80417 135HACO40 32 33 c.0.5 1.85 44 2 0.0 2.1 <2 0.5 192 156 26 3.06 10 4.16 60 2.19 2350 A80412 135HACO68 12 14 21 10 c.0.5 22 0.01 c.0.5 32 330 7.60 100 0.02 10 0.12 133 A80421 135HACO68 15 16 0.5 2.2 1 40 2.5 2.001 c.0.5 </td <td>A80413</td> <td>13SHAC040</td> <td>23</td> <td>24</td> <td><0.5</td> <td>5.35</td> <td><5</td> <td>14</td> <td>140</td> <td>5.6</td> <td><2</td> <td>0.73</td> <td><0.5</td> <td>449</td> <td>1110</td> <td>35</td> <td>4.82</td> <td><10</td> <td>0.07</td> <td>80</td> <td>4.05</td> <td>5060</td>	A80413	13SHAC040	23	24	<0.5	5.35	<5	14	140	5.6	<2	0.73	<0.5	449	1110	35	4.82	<10	0.07	80	4.05	5060
A80416 135HAC040 30 31 <0.5 3.49 <5 <1 630 1.4 <2 0.49 <0.5 367 3980 23 8.75 <10 0.43 30 3.25 4950 A80417 135HAC040 31 32 <0.5	A80414	13SHAC040			<0.5			34	1530				<0.5	_		-		-		-		
AB0417 135HACO40 31 32 C0.5 7.9 C-5 C1 2300 2.1 C-2 0.55 102 156 26 3.06 10 4.16 60 2.19 2330 A80418 13SHACO68 12 13 <0.5	A80415	13SHAC040	-						-					-	-	-						
A80418 135HAC040 32 33 <0.5 6.21 <5 1 1780 1.2 <2 0.2 <0.5 182 665 13 2.97 10 5.06 40 1.69 2450 A80419 135HAC068 11 14 <0.5 12 0.01 <0.5 <2 0.01 <0.5 37 7510 80 7.4 30 0.05 <10 0.2 118 A80421 135HAC068 14 15 0.6 9.49 24 1 40 <0.5 <2 0.01 <0.5 301 7780 106 21.6 10 0.04 10 0.13 603 A80421 135HAC068 16 17 <0.5 9.23 8 <1 50 <52 0.01 <0.5 303 7450 154 30.6 10 0.01 0.0 1.4 1220 <0.5 <2 0.01 <0.5 376 7730 154		13SHAC040																				
A8041913SHAC0681213<0.511.8544250<0.5<20.01<0.5377510807.4300.05<100.2138A8042013SHAC0681314<0.5	A80417	13SHAC040						<1														
A80420135HAC0681314<0.512.914<110<0.5<20.01<0.5225300574.67200.02<100.12109A80421135HAC06814150.69.4924140<0.5	A80418	13SHAC040	32	33	<0.5	6.21	<5	1	1780	1.2	<2	0.2	<0.5	182	695	13	2.97	10	5.06	40	1.69	2450
A80421135HAC06814150.69.4924140 <0.5 <2 0.01 <0.5 301778010621.6100.04100.13603A80422135HAC0681516 <0.5 10.356 <1 510 <0.5 <2 0.01 <0.5 303745015317.8200.03100.141250A80423135HAC0681718 <0.5 6.557 <1 20 <0.5 20.01 <0.5 376773015430.5100.01100.121220A80425135HAC0681819 <0.5 4.4911 <1 1230 <0.5 <2 0.01 <0.5 376773015430.5100.01100.121220A80426135HAC0681920 <0.5 5.26 <1 120 <0.5 <2 0.01 <0.5 37715430.6200.01100.141540A80426135HAC0682021 <0.5 5.26 <1 120 <0.5 <2 0.01 <0.5 37715430.6200.01100.141540A80426135HAC0682122 <0.5 5.86 <1 120 <0.5 <2 0.01 <0.5 372 <1000 10030100.01100.141140A804291		13SHAC068																				
A80422 13SHAC068 15 16 <0.5 10.35 6 <1 510 <0.5 <2 0.01 <0.5 303 7450 153 17.8 20 0.03 10 0.19 570 A80423 13SHAC068 16 17 <0.5	A80420	13SHAC068	13	14	<0.5	12.9	14	<1	10	<0.5	<2	0.01	<0.5	22	5300	57	4.67	20	0.02	<10	0.12	109
A80423 135HAC068 16 17 <0.5 9.23 8 <1 50 <0.5 2 0.01 <0.5 427 5920 175 24.7 20 0.02 10 0.14 1250 A80424 135HAC068 11 18 <0.5	A80421	13SHAC068	14	15	0.6	9.49	24	1	40	<0.5	<2	0.01	<0.5	301	7780	106	21.6	10	0.04	10	0.13	
A80424 13SHAC068 17 18 <0.5 6.55 7 <1 20 <0.5 <2 0.01 <0.5 376 7730 154 30.5 10 0.01 10 0.12 1220 A80425 13SHAC068 18 19 <0.5	A80422	13SHAC068	15	-	<0.5	10.35	6	<1	510	<0.5		0.01	<0.5	303	7450	153	17.8	20	0.03	10	0.19	
A80425 13SHAC068 18 19 <0.5 4.49 11 <1 1230 <0.5 <2 0.01 <0.5 711 6840 117 36.6 10 0.01 10 0.13 1940 A80426 13SHAC068 19 20 <0.5	A80423	13SHAC068	16	17		9.23	8	<1	50	<0.5	2	0.01	<0.5	427	5920	175	24.7	20	0.02	10	0.14	
A80426 13SHAC068 19 20 <0.5 5.52 6 <1 120 <0.5 <22 0.01 <0.5 327 >10000 154 30.6 20 0.01 10 0.14 1540 A80427 13SHAC068 20 21 <0.5																						
A80427 13SHAC068 20 21 <0.5 9.14 <5 1 840 0.5 <2 0.01 <0.5 352 4450 98 21.9 20 0.01 10 0.27 1900 A80428 13SHAC068 21 22 <0.5		13SHAC068	18									0.01					36.6	-	0.01	10		
A80428 13SHAC068 21 22 <0.5 5.86 < 8 550 0.5 3 0.01 <0.5 429 >10000 100 30 10 0.01 10 0.14 1140 A80429 13SHAC068 22 23 <0.5	A80426	13SHAC068				5.52		<1	120	<0.5		0.01			>10000				0.01	10		
A80429 13SHAC068 22 23 <0.5 10.25 <5 70 0.7 2 <0.01 <0.5 145 6550 87 18.4 10 0.01 <10 0.16 548 A80430 13SHAC068 23 24 <0.5		13SHAC068															-	-			-	
A80430 13SHAC068 23 24 <0.5 9.22 <5 <1 40 0.6 2 0.01 <0.5 159 >1000 71 18.65 10 0.01 <10 0.42 375 A80431 13SHAC068 24 25 <0.5																				-		
A80431 13SHAC068 24 25 <0.5 6.4 7 13 30 0.8 4 0.01 <0.5 124 >1000 64 18.1 10 0.01 <10 0.22 303 A80432 13SHAC068 25 26 <0.5																						
A80432 13SHAC068 25 26 <0.5 4.91 <5 <1 10 <0.5 <2 0.01 <0.5 97 4630 37 12.05 <10 0.01 <10 0.28 259 A80433 13SHAC068 26 27 <0.5		13SHAC068																				
A80433 13SHAC068 26 27 <0.5 9.53 <5 2 30 0.5 <2 0.01 <0.5 120 7950 51 17.8 10 0.02 10 0.53 448 A80434 13SHAC068 27 28 <0.5 6.78 5 <1 10 0.5 2 0.02 <0.5 138 >1000 39 20.6 <10 0.02 <10 0.57 426 A80435 13SHAC068 28 29 <0.5 8.36 6 <1 0.5 <2 0.02 <0.5 138 >1000 39 20.6 <10 0.02 <10 0.57 426 A80435 13SHAC068 28 29 <0.5 8.36 6 <1 0.5 <2 0.02 <0.5 166 6520 46 18.55 10 0.02 <10 0.37 497 A80436 13SHAC068 30 31 <0.5 5.25 6 <1 20 <5.25 <2 0.03 <0.5 259																						
A80434 13SHAC068 27 28 <0.5 6.78 5 <1 10 0.5 2 0.02 <0.5 138 >10000 39 20.6 <10 0.02 <10 0.57 426 A80435 13SHAC068 28 29 <0.5			-			-	-		-					-				-		-		
A80435 13SHAC068 28 29 <0.5 8.36 6 <1 10 0.5 <2 0.02 <0.5 196 6520 46 18.55 10 0.02 <10 0.77 711 A80436 13SHAC068 29 30 <0.5 5.25 6 <1 30 <0.5 <2 0.02 <0.5 64 4180 19 8.4 <10 0.02 <10 0.37 497 A80437 13SHAC068 30 31 <0.5 1 20 <0.5 <2 0.03 <0.5 259 6140 33 10.8 <10 0.02 <10 0.77 711 A80437 13SHAC068 30 31 <0.5 9.18 <5 1 20 <0.5 <2 0.03 <0.5 259 6140 33 10.8 <10 0.02 <10 0.72 1190 A80438 13SHAC068 31 32 <0.5 3.57 <5 <1 40 <5.5 <2 0.08 <0.5 1470																						
A80436 13SHAC068 29 30 <0.5 5.25 6 <1 30 <0.5 <2 0.02 <0.5 64 4180 19 8.4 <10 0.02 10 0.37 497 A80437 13SHAC068 30 31 <0.5 9.18 <5 1 20 <0.5 <2 0.03 <0.5 259 6140 33 10.8 <10 0.02 <10 0.72 1190 A80438 13SHAC068 31 32 <0.5 3.57 <5 <1 400 <0.5 <2 0.08 <0.5 1470 1130 40 4.15 <10 0.02 <10 0.72 4810 A80439 13SHAC068 31 32 <0.5 <1 40 <0.5 <2 0.08 <0.5 1470 1130 40 4.15 <10 0.03 <10 0.72 4810 A80439 13SHAC067 12 13 <0.5 6.66 <1 50 <52 <2 0.01 <0.5 58 5140 </td <td></td>																						
A80437 13SHAC068 30 31 <0.5 9.18 <5 1 20 <0.5 <2 0.03 <0.5 259 6140 33 10.8 <10 0.02 <10 0.72 1190 A80438 13SHAC068 31 32 <0.5							-		-													
A80438 13SHAC068 31 32 <0.5 3.57 <5 <1 40 <0.5 <2 0.08 <0.5 1470 1130 40 4.15 <10 0.03 <10 0.72 4810 A80439 13SHAC067 12 13 <0.5														-						-		
A80439 13SHAC067 12 13 <0.5 6.66 6 <1 50 <0.5 <2 0.01 <0.5 58 5140 111 26.7 20 0.01 <10 0.14 351																		-		-		
	-																					
	A80440	13SHAC067	13	14	<0.5	5.5	8	2	10	0.5	<2	0.01	<0.5	54	6060	107	26.2	10	0.01	<10	0.16	365
A80441 13SHAC067 14 15 <0.5 5.76 9 30 10 <0.5 <2 0.01 <0.5 35 9400 144 26.8 20 0.01 <10 0.15 207							-		-											-		
A80442 13SHAC067 15 16 <0.5 5.45 13 2 10 <0.5 <2 <0.01 <0.5 117 5910 129 35 20 0.01 10 0.05 808			-				-		-							-		-		-		
A80443 13SHAC067 16 17 <0.5 5.72 16 <1 10 <0.5 <2 <0.01 <0.5 83 8350 179 33.3 20 0.01 <10 0.1 709		-																				
A80444 13SHAC067 17 18 <0.5 5.27 9 2 10 <0.5 2 <0.01 <0.5 50 >10000 130 35.7 10 <10 0.17 589							-													-		
A80445 13SHAC067 18 19 <0.5 7.51 10 3 10 <0.5 <2 <0.01 <0.5 27 7970 139 30.2 20 0.01 <10 0.1 341	A80445	13SHAC067	18	19	<0.5	7.51	10	3	10	<0.5	<2	<0.01	<0.5	27	7970	139	30.2	20	0.01	<10	0.1	341

A80446	13SHAC067	19	20	<0.5	9.81	8	8	10	<0.5	<2	0.01	<0.5	19	6710	80	25.2	20	0.01	<10	0.08	365
A80447	13SHAC067	20	21	<0.5	5.86	<5	<1	10	<0.5	<2	0.01	<0.5	44	>10000	245	36.9	30	0.01	<10	0.04	338
A80448	13SHAC067	21	22	<0.5	7.18	10	<1	10	<0.5	<2	0.01	<0.5	88	8570	234	33.3	10	< 0.01	<10	0.11	878
A80449	13SHAC067	22	23	<0.5	6.68	7	<1	250	<0.5	2	0.01	<0.5	103	8760	163	34.5	10	<0.01	<10	0.1	921
A80450	13SHAC067	23	24	<0.5	6.56	10	1	20	0.5	4	0.01	<0.5	73	>10000	178	34.5	10	0.01	<10	0.13	1160
A80451	13SHAC067	24	25	<0.5	10.5	<5	<1	550	<0.5	2	<0.01	<0.5	100	4620	161	23	20	0.01	<10	0.09	773
A80452	13SHAC067	25	26	<0.5	7.48	10	<1	210	0.5	2	0.01	<0.5	65	6020	104	32.7	20	< 0.01	<10	0.13	901
A80453	13SHAC067	26	27	<0.5	8.96	9	1	150	0.5	<2	0.01	<0.5	57	6330	165	28.7	20	0.01	<10	0.08	773
A80454	13SHAC067	27	28	<0.5	8.84	<5	1	70	<0.5	<2	0.01	<0.5	47	5910	118	28.6	20	0.01	<10	0.12	748
A80455	13SHAC067	28	29	<0.5	8.72	6	6	260	0.7	<2	0.01	<0.5	38	4010	90	25.2	10	0.01	<10	0.12	894
A80456	13SHAC067	29	30	<0.5	12.15	<5	10	210	0.5	<2	0.01	<0.5	138	1900	66	15.45	20	0.04	20	0.11	4910
A80457	13SHAC067	30	31	<0.5	10.7	<5	2	190	0.5	<2	0.01	<0.5	113	2370	77	14.75	20	0.03	<10	0.07	3010
A80458	13SHAC067	31	32	<0.5	13.7	<5	1	280	0.6	<2	0.01	<0.5	158	1300	38	8.42	30	0.06	40	0.08	6660
A80459	13SHAC067	32	33	<0.5	10.4	6	3	280	0.5	<2	0.01	<0.5	160	5850	132	25.3	20	0.04	<10	0.07	5150
A80460	13SHAC067	33	34	<0.5	8.28	10	1	190	<0.5	2	0.01	<0.5	134	6560	181	28.9	20	0.02	<10	0.09	3220
A80461	13SHAC067	34	35	<0.5	9.96	5	1	80	<0.5	<2	0.01	<0.5	142	3200	106	21.6	20	0.03	<10	0.13	3760
A80462	13SHAC067	35	36	<0.5	7.25	10	5	20	0.6	<2	0.01	<0.5	102	7440	163	26.8	20	0.01	10	0.11	1260
A80463	13SHAC067	36	37	<0.5	7.14	7	<1	20	0.7	<2	0.01	<0.5	90	6270	123	18.15	20	0.01	<10	0.07	538
A80464	13SHAC067	37	38	<0.5	13.6	6	7	20	0.5	<2	0.01	<0.5	20	1200	36	5.62	20	0.02	60	0.17	242
A80465	13SHAC067	38	39	<0.5	11.35	5	<1	40	<0.5	<2	0.01	<0.5	21	1080	27	4.91	20	0.1	20	0.16	319
A80466	13SHAC067	39	40	<0.5	7.03	5	<1	130	0.8	3	0.03	<0.5	142	5410	125	18.95	10	0.03	10	0.44	2330
A80467	13SHAC067	40	41	<0.5	6.47	<5	10	110	1	<2	0.05	<0.5	226	7390	117	22	10	0.03	10	0.81	2820
A80468	13SHAC067	41	42	<0.5	6.02	<5	<1	40	0.7	<2	0.04	<0.5	243	5960	77	17.05	10	0.03	10	0.57	1640
A80469	13SHAC067	42	43	<0.5	8.06	<5	<1	20	0.7	<2	0.03	<0.5	304	4750	65	12.2	10	0.02	20	0.5	1760
A80470	13SHAC067	43	44	<0.5	5.8	5	7	40	1	<2	0.04	<0.5	347	7450	97	18.05	10	0.03	10	0.68	2030
A80471	13SHAC067	44	45	<0.5	4.82	<5	<1	70	0.8	<2	0.08	<0.5	264	3480	91	13.75	10	0.04	10	0.73	1740
A80472	13SHAC067	45	46	<0.5	2.09	<5	1	40	0.9	<2	0.04	<0.5	306	2200	63	6.44	<10	0.03	20	0.32	1730
A80473	13SHAC067	46	47	<0.5	1.5	<5	2	20	<0.5	<2	0.07	<0.5	243	1030	36	3.65	<10	0.03	<10	0.19	1120
A80474	13SHAC066	36	37	<0.5	7.68	<5	1	10	2.2	2	0.01	<0.5	176	4490	416	30	20	0.01	10	0.08	1110
A80475	13SHAC066	37	38	<0.5	7.64	<5	1	30	0.6	<2	0.01	<0.5	94	2910	181	21	20	0.02	20	0.09	1070
A80476	13SHAC066	38	39	<0.5	10.5	<5	1	50	0.8	<2	0.02	<0.5	56	1580	38	10.5	30	0.04	600	0.09	1120
A80477	13SHAC066	39	40	<0.5	6.9	5	<1	80	0.6	<2	0.02	<0.5	85	1660	73	11.75	10	0.05	20	0.14	967
A80478	13SHAC066	40	41	<0.5	6.36	<5	<1	200	1	<2	0.03	<0.5	111	3950	94	15.85	10	0.03	20	0.3	1680
A80479	13SHAC066	41	42	<0.5	4.29	<5	<1	90	0.7	<2	0.04	<0.5	209	3400	104	11.05	10	0.05	10	0.55	1790
A80480	13SHAC066	42	43	<0.5	4.66	<5	<1	50	0.6	<2	0.04	<0.5	135	2540	83	7.74	10	0.07	20	0.55	836
A80481	13SHAC065	44	45	<0.5	4.94	<5	<1	180	1	<2	0.13	<0.5	110	2690	1440	14.5	10	0.09	10	1.09	1410
A80482	13SHAC065	45	46	<0.5	5.9	<5	<1	290	0.7	2	0.07	<0.5	91	652	216	8.14	20	0.57	150	1.7	1090
A80483	13SHAC065	46	47	<0.5	5.67	<5	<1	300	0.9	<2	0.09	<0.5	139	846	274	10.25	20	0.95	210	2	1590
A80484	13SHAC065	47	48	<0.5	4.26	<5	<1	770	2.8	<2	0.18	<0.5	357	2640	529	16.2	10	0.08	20	1.48	4700
A80485	13SHAC065	48	49	<0.5	4.85	<5	<1	220	1.6	<2	0.16	<0.5	286	3340	505	15.35	10	0.09	30	1.25	2730
A80486	13SHAC065	49	50	<0.5	4.53	<5	1	660	2.8	<2	0.55	<0.5	365	1960	498	11.9	10	0.51	120	2.05	3160
A80487	13SHAC065	50	51	<0.5	4.04	<5	1	360	6.2	<2	1.21	<0.5	309	3190	339	10.1	10	0.34	310	2.36	1910
A80488	13SHAC065	51	52	<0.5	3.06	<5	10	30	4.4	<2	7.47	<0.5	164	1090	247	8.83	10	0.08	20	6.69	959

			1	r		-		[[[1							Real Providence	
SAMPLE ID	Hole ID	mFrom	mTo	Mo ppm	Na pct	Ni_ppm	P ppm	Pb ppm	Pd_ppb	Pt ppb	S_pct	Sb_ppm	Sc_ppm	Sr_ppm	Th ppm	Ti pct	Tl_ppm	U ppm	V ppm	W_ppm	Zn_ppm
A80401	13SHAC038	28	29	<1	0.41	1150	40	<2	10	<5	0.14	<5	74	4	<20	0.25	<10	<10	321	<10	470
A80402	13SHAC038	29	30	<1	0.28	1290	30	3	11	5	0.13	<5	52	6	<20	0.25	<10	<10	184	<10	647
A80403	13SHAC038	30	31	<1	0.21	1690	30	4	9	6	0.13	<5	48	6	<20	0.11	<10	<10	180	<10	822
A80404	13SHAC038	31	32	<1	0.39	774	40	6	14	<5	0.16	<5	98	14	<20	0.36	<10	<10	503	<10	390
A80405	13SHAC038	44	45	1	0.54	1770	50	7	15	7	0.13	<5	112	7	<20	0.16	<10	<10	360	<10	433
A80406	13SHAC040	8	9	<1	0.45	1810	30	<2	4	6	0.1	<5	11	4	<20	0.07	<10	<10	117	<10	54
A80407	13SHAC040	9	10	1	0.54	1660	20	<2	4	6	0.06	<5	10	4	<20	0.06	<10	<10	52	<10	34
A80408	13SHAC040	10	11	<1	0.57	1870	20	<2	3	5	0.04	<5	12	13	<20	0.06	<10	<10	63	<10	43
A80409	13SHAC040	11	12	<1	1.01	1300	50	13	2	<5	0.02	<5	8	37	20	0.06	<10	<10	31	<10	28
A80410	13SHAC040	20	21	<1	0.67	1590	50	<2	8	15	0.07	<5	13	9	<20	0.03	<10	<10	51	<10	30
A80411	13SHAC040	21	22	<1	0.99	9760	100	30	6	18	0.06	<5	37	58	<20	0.14	<10	<10	81	<10	81
A80412	13SHAC040	22	23	<1	0.67	8660	60	7	5	18	0.03	<5	12	99	<20	0.04	<10	<10	67	<10	99
A80413	13SHAC040	23	24	<1	1.43	11050	80	9	6	10	0.04	<5	14	130	<20	0.04	<10	<10	41	<10	67
A80413	13SHAC040	28	29	<1	0.95	1670	40	42	1	<5	0.04	<5	3	81	20	0.07	<10	<10	16	<10	14
A80415	13SHAC040	20	30	<1	1.23	3120	50	43	6	5	0.02	<5	5	67	20	0.07	<10	<10	20	<10	34
A80415 A80416	13SHAC040 13SHAC040	30	31	1	1.23	5360	30	43	9	15	0.04	<5	17	51	<20	0.04	<10	<10	42	<10	76
A80410	13SHAC040	31	32	<1	1.58	3050	90	40	3	<5	0.00	<5	4	107	30	0.04	<10	10	23	<10	37
A80417 A80418	13SHAC040 13SHAC040	32	33	<1	1.9	2040	50	40	4	7	0.04	<5	4	78	20	0.09	<10	<10	23	<10	37
A80418 A80419	13SHAC040 13SHAC068	12	13	1	0.54	1470	40	6	4 11	11	0.03	<5	35	3	<20	0.03	<10	<10	430	<10	26
A80419	135HAC008	12	13	<1	0.34	1530	20	3	11	8	0.14	<5	22	2	<20	0.55	<10	<10	178	<10	18
A80420 A80421	13SHAC068 13SHAC068	13	14	1	0.48	4310	60	3 <2	11	8 18	0.12	<5	39	3	<20	0.55	<10	<10	263	<10	18
									23						_		-	-		-	74
A80422 A80423	13SHAC068	15 16	16	<1	0.48	2670 4020	50 80	8 12	23	16	0.19	<5 <5	35 35	9	<20 <20	0.17	<10 <10	<10 <10	166	<10 <10	134
	13SHAC068	16	17	<1	-	4020 5800	80 110	6	24 16	16 16	0.22			6 4	<20	0.25	<10	<10	153	<10	
A80424	13SHAC068		18	3	0.35		-	-	-	-	0.35	<5	39		_	-	-	-	198	-	221
A80425	13SHAC068	18	19	1	0.33	4390	180	3	13	13	0.38	<5	36	21	<20	0.09	<10	<10	231	<10	182
A80426	13SHAC068	19	20	<1	0.43	4610	220	<2	25	16	0.42	<5	42	6	<20	0.45	<10	<10	327	<10	232
A80427	13SHAC068	20	21	<1	0.45	2860	190	6	22	10	0.28	<5	33	16	<20	0.51	<10	<10	212	<10	124
A80428	13SHAC068	21	22	<1	0.34	4440	140	<2	15	7	0.42	<5	31	10	<20	0.08	<10	<10	175	<10	234
A80429	13SHAC068	22	23	<1	0.37	2620	120	4	14	10	0.26	<5	28	3	<20	0.28	<10	<10	158	<10	153
A80430	13SHAC068	23	24	<1	0.5	3300	100	<2	9	8	0.31	<5	32	4	<20	0.09	<10	<10	150	<10	241
A80431	13SHAC068	24	25	<1	0.45	2930	120	<2	6	6	0.33	<5	28	3	<20	0.07	<10	<10	146	<10	318
A80432	13SHAC068	25	26	<1	0.29	2780	60	<2	8	<5	0.17	<5	20	2	<20	0.04	<10	<10	82	<10	159
A80433	13SHAC068	26	27	<1	0.65	5020	90	<2	9	6	0.31	<5	43	5	<20	0.25	<10	<10	152	<10	250
A80434	13SHAC068	27	28	<1	0.75	6800	90	<2	7	6	0.34	<5	44	5	<20	0.09	<10	<10	140	<10	317
A80435	13SHAC068	28	29	<1	0.85	6700	90	<2	6	7	0.26	<5	53	5	<20	0.15	<10	<10	126	<10	335
A80436	13SHAC068	29	30	<1	0.43	3600	70	6	9	<5	0.12	<5	21	4	<20	0.04	<10	<10	66	<10	135
A80437	13SHAC068	30	31	<1	0.86	5900	70	7	5	7	0.14	<5	40	5	<20	0.05	<10	<10	83	<10	134
A80438	13SHAC068	31	32	<1	0.33	2320	30	2	5	<5	0.05	<5	13	3	<20	0.03	<10	<10	38	<10	80
A80439	13SHAC067	12	13	<1	0.39	1430	70	3	17	15	0.18	<5	50	2	<20	0.24	<10	<10	184	<10	58
A80440	13SHAC067	13	14	<1	0.41	2410	90	5	27	20	0.16	<5	61	3	<20	0.2	<10	<10	208	<10	95
A80441	13SHAC067	14	15	<1	0.43	3370	110	<2	31	36	0.32	<5	69	2	<20	0.25	<10	<10	292	<10	218
A80442	13SHAC067	15	16	<1	0.37	2990	60	6	16	38	0.21	<5	63	4	<20	0.27	<10	10	255	<10	155
A80443	13SHAC067	16	17	<1	0.42	2390	80	3	18	38	0.25	<5	70	2	<20	0.29	<10	<10	297	<10	147
A80444	13SHAC067	17	18	<1	0.48	5420	70	<2	16	43	0.36	<5	59	3	<20	0.15	<10	<10	287	<10	197
A80445	13SHAC067	18	19	<1	0.57	3580	80	2	28	37	0.33	<5	63	2	<20	0.28	<10	<10	285	<10	186
A80446	13SHAC067	19	20	<1	0.59	3480	70	5	21	24	0.27	<5	48	3	<20	0.36	<10	<10	220	<10	144
A80447	13SHAC067	20	21	<1	0.24	5680	120	<2	27	39	0.5	<5	98	3	<20	0.48	<10	<10	519	<10	380
	•		•			·	-						•								

															1. State 1.	6				All and a second	
A80448	13SHAC067	21	22	<1	0.49	3810	70	5	22	35	0.41	<5	60	2	<20	0.58	<10	<10	317	<10	193
A80449	13SHAC067	22	23	<1	0.54	5270	70	4	28	30	0.46	<5	67	9	<20	0.25	<10	<10	343	<10	244
A80450	13SHAC067	23	24	<1	0.55	6210	70	<2	49	41	0.47	<5	78	3	<20	0.2	<10	<10	331	<10	263
A80451	13SHAC067	24	25	<1	0.53	1880	100	2	31	26	0.29	<5	56	15	<20	0.53	<10	<10	236	<10	110
A80452	13SHAC067	25	26	<1	0.53	4430	100	<2	24	29	0.39	<5	66	8	<20	0.2	<10	<10	288	<10	212
A80453	13SHAC067	26	27	<1	0.52	2490	100	3	29	31	0.34	<5	78	6	<20	0.38	<10	<10	330	<10	157
A80454	13SHAC067	27	28	<1	0.45	2210	90	2	23	26	0.35	<5	66	4	<20	0.28	<10	<10	321	<10	125
A80455	13SHAC067	28	29	<1	0.45	2200	100	4	24	16	0.29	<5	52	8	<20	0.2	<10	<10	270	<10	148
A80456	13SHAC067	29	30	<1	0.51	954	90	76	15	12	0.19	<5	27	9	<20	0.44	<10	<10	169	<10	65
A80457	13SHAC067	30	31	<1	0.38	944	100	20	12	12	0.16	<5	40	6	<20	0.49	<10	<10	187	<10	82
A80458	13SHAC067	31	32	<1	0.47	639	130	20	20	11	0.14	<5	24	16	40	0.25	<10	<10	95	<10	45
A80459	13SHAC067	32	33	<1	0.35	1910	110	11	16	20	0.31	<5	72	16	<20	0.4	<10	<10	317	<10	124
A80460	13SHAC067	33	34	<1	0.39	3230	140	10	13	21	0.35	<5	63	6	<20	0.28	<10	<10	298	<10	132
A80461	13SHAC067	34	35	<1	0.44	1940	130	8	13	23	0.25	<5	45	3	<20	0.22	<10	<10	209	<10	79
A80462	13SHAC067	35	36	<1	0.49	2820	190	<2	13	19	0.4	<5	81	3	<20	0.26	<10	<10	314	<10	170
A80463	13SHAC067	36	37	<1	0.33	1530	90	4	10	18	0.23	<5	68	2	<20	0.29	<10	<10	251	<10	142
A80464	13SHAC067	37	38	<1	0.48	500	100	8	9	5	0.13	<5	33	3	40	0.15	<10	<10	57	<10	38
A80465	13SHAC067	38	39	<1	0.35	484	50	10	5	5	0.1	<5	32	3	20	0.09	<10	<10	41	<10	32
A80466	13SHAC067	39	40	<1	0.7	3570	60	14	7	25	0.2	<5	100	6	<20	0.23	<10	<10	210	<10	174
A80467	13SHAC067	40	41	<1	0.93	8630	150	6	8	24	0.25	<5	119	8	<20	0.11	<10	<10	201	<10	374
A80468	13SHAC067	41	42	<1	0.91	4990	70	<2	5	17	0.18	<5	110	6	<20	0.16	<10	<10	151	<10	205
A80469	13SHAC067	42	43	<1	0.57	2640	60	<2	6	12	0.13	<5	68	5	<20	0.09	<10	<10	115	<10	137
A80470	13SHAC067	43	44	<1	0.82	4630	60	<2	14	45	0.17	<5	119	6	<20	0.16	<10	<10	197	<10	220
A80471	13SHAC067	44	45	<1	0.79	3090	80	<2	8	23	0.14	<5	119	9	<20	0.18	<10	<10	143	<10	148
A80472	13SHAC067	45	46	<1	0.25	1550	60	<2	4	15	0.05	<5	40	6	<20	0.04	<10	<10	58	<10	87
A80473	13SHAC067	46	47	<1	0.2	813	40	<2	2	10	0.04	<5	19	7	<20	0.02	<10	<10	31	<10	43
A80474	13SHAC066	36	37	<1	0.34	3480	100	<2	13	15	0.44	<5	84	4	<20	0.31	<10	<10	414	<10	505
A80475	13SHAC066	37	38	<1	0.31	1170	80	15	11	13	0.24	<5	58	3	20	0.37	<10	<10	345	<10	176
A80476	13SHAC066	38	39	<1	0.35	460	620	37	4	8	0.1	<5	40	15	300	0.24	<10	<10	130	<10	44
A80477	13SHAC066	39	40	<1	0.24	683	80	15	4	10	0.12	<5	51	4	<20	0.11	<10	<10	162	<10	66
A80478	13SHAC066	40	41	<1	0.41	1570	80	9	8	19	0.15	<5	71	6	<20	0.12	<10	<10	194	<10	118
A80479	13SHAC066	41	42	<1	0.55	3090	90	<2	5	8	0.1	<5	93	9	<20	0.18	<10	<10	130	<10	205
A80480	13SHAC066	42	43	<1	0.42	1770	100	3	4	24	0.08	<5	63	6	20	0.08	<10	<10	64	<10	120
A80481	13SHAC065	44	45	<1	1.11	4930	60	4	3	5	0.05	<5	268	14	<20	0.33	<10	<10	401	<10	2000
A80482	13SHAC065	45	46	<1	0.74	749	290	14	4	<5	0.03	<5	90	14	50	0.33	<10	<10	134	<10	217
A80483	13SHAC065	46	47	<1	0.83	1050	330	9	2	5	0.04	<5	94	16	60	0.56	<10	<10	138	<10	288
A80484	13SHAC065	47	48	<1	1.18	4190	60	<2	6	8	0.04	<5	80	18	<20	0.21	<10	<10	223	<10	861
A80485	13SHAC065	48	49	<1	1.23	4340	70	<2	4	6	0.05	<5	120	17	<20	0.33	<10	<10	182	<10	1080
A80486	13SHAC065	49	50	<1	1.14	3110	50	5	4	5	0.03	<5	63	31	<20	0.23	<10	<10	181	<10	516
A80487	13SHAC065	50	51	<1	1.07	3000	60	2	4	5	0.02	<5	66	31	20	0.23	<10	<10	113	<10	390
A80488	13SHAC065	51	52	<1	0.77	1830	30	<2	3	<5	0.01	<5	68	28	<20	0.21	<10	<10	224	<10	284

Appendix 3: Aircore 1m Split Sample Assay Ranges	Appendix 3: Aircore	1m Split Sample Assay Ranges	
--	---------------------	------------------------------	--

		Values	
Element_Unit	Samples	Minimum	Maximum
Ni_ppm	88	460	11,050
Cu_ppm	88	9	1,440
Co_ppm	88	19	1,870
Pt_ppb	88	<5	45
Pd_ppb	88	1	49
Cr_ppm	88	79	10,005
S_ppm	88	100	5,000
Au_ppb	88	<1	74
Ag_ppm	88	<0.5	0.60
Al_pct	88	1.5	14
As_ppm	88	2.5	100
Ba_ppm	88	10	2,300
Be_ppm	88	<0.5	10
Bi_ppm	88	1	4
Ca_pct	88	<0.01	7
Cd_ppm	88	<0.5	<0.5
Fe_pct	88	1.91	41
Ga_ppm	88	5	30
K_pct	88	<0.01	6
La_ppm	88	5	600
Mg_pct	88	0.04	7
Mn_ppm	88	58	10,600
Mo_ppm	88	<1	3
Na_pct	88	0.2	2
P_ppm	88	20	620
Pb_ppm	88	1	76
Sb_ppm	88	2.5	3
Sc_ppm	88	3	268
Sr_ppm	88	2	130
Th_ppm	88	10	300
Ti_pct	88	0.02	0.91
Tl_ppm	88	5	5
U_ppm	88	5	10
V_ppm	88	16	519
W_ppm	88	5	5
Zn_ppm	88	14	2,000