

ACN 123 920 990

30 October 2013

Manager of Company Announcements ASX Limited Exchange Centre 20 Bridge Street SYDNEY NSW 2001

By E-Lodgement

MT DANVERS PROJECT EXPLORATION UPDATE

- RC drilling programme has been completed successfully.
- 22 holes were drilled for a total of 1,752m.
- Best results include 1m @ 202ppm U, 1m @ 180ppm U and 1m @ 8,370ppm Pb

United Uranium Limited (ASX: UUL) ("United" or "the Company) has completed first phase RC drilling on the Mt Danvers Project (E08/2341) which covers a total area of approximately 120m² and is situated approximately 300 kilometres north-east of Carnarvon in Western Australia.

The Company is mainly targeting unconformity related uranium deposits similar to the east Alligator region of the Northern Territory, Athabasca Basin in Canada and the nearby the Rudall – Throssell (Kintyre), the Upper Ashburton Turee Creek and Angelo River discoveries and the upper Gascoyne Hooley Camp, Dulcy, Mundong Well and Horse Well occurrences in Western Australia.

The Phase 1 RC drilling program comprised 2 selected traverses along cleared access, running off existing access tracks with a total of 22 holes for 1,752m being completed.

The 2 traverses (MD1 and MD5) completed are shown in the Annexure as Figures 2 & 3.

They are targeted on:

- Existing outcropping radiometrically anomalous dolomites. These also have a
 positive magnetic signature forming magnetic ridges (other ridges may be similar).
 Magnetic troughs may indicate alteration and demagnetisation; and
- Proximity to the unconformity.

Traverse MD1 was targeted to test the basement below the unconformity in the north of the project and MD5 was drilled to test the foot and hanging walls of the uraniferous dolomite located during earlier ground traverses.

The drilling on Traverse 1 was broad spaced (100 metres) and each hole drilled to 50 metres inclined at -60 degrees to the east.

Drilling on Traverse 5 was across the outcropping anomalous dolomites and its footwall and hanging wall was spaced at 50 metres and all holes drilled to 100 metres in depth, inclined at - 60 degrees to the east to get full sectional coverage.

Sample selection was based on both the gamma readings on the spectrometer and the Niton XRF checks of samples. Most samples were 4 metre composites but 15 individual 1 metre samples were taken in hole MDRC010 in zones of elevated gamma readings. A total of 134 samples were taken in all. The best anomalous assays returned were 1m @ 202ppm U in MDRC010 (80 to 81 metres), and 1m @ 180ppm U in MDRC010 (106 to 107 metres).

Table 1 and 2 in the Appendix summarises the completed RC drilling.

It appears that there is surficial enrichment of uranium in the top of the weathered limonitic dolomite, with only weak readings at depth. The best hole on the traverse was hole MDRC010 in the east that had elevated gamma counts throughout and corresponding scattered anomalous Uranium values mostly below 80 metres. These are also associated with very high Sulphur values which may suggest the presence of sulphides (probably pyrite). The only elevated Au values of 23.5 ppb (26 to 27 metres) and 39.3 ppb (28 to 29 metres) located are both from this hole.

Although the hole was finished at 120 metres, the hole ended in uranium mineralisation, in an area where the unconformity model can be applied and should be followed up.

The nearby high sulphur in MDRC11 and 12 and high lead on nearby MRD11, 12 and 13 should also be followed up at the same time.

Table 3 in the Annexure shows the values and relationships between Uranium, Sulphur and gamma cps. The gamma comparison is only for where the sample was a single 1 metre. It is mostly a close correlation but locally the grabbed sample did not match the gross sample CPS. Background at MDRC010 was 160 cps and all values > 350 are highlighted.

The Company is currently reviewing all data, to determine the best way forward.

- ENDS -

For more information please contact:

George Lazarou Executive Director T: +61 8 6436 1888

Competent Person's Statement

The review of exploration activities contained in this report is based on information compiled by Peter Francis Robinson, a Principal of independent consultants Peter F Robinson and Associates Pty Ltd, and a Fellow of the Australasian Institute of Mining and Metallurgy, (AusIMM) and is a Chartered Practicing Geologist (CPG) for the Mining Industry Consultants Association. He has sufficient experience which is relevant to the style of mineralisation under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2004 edition of the Australian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Peter Francis Robinson has consented to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Appendix

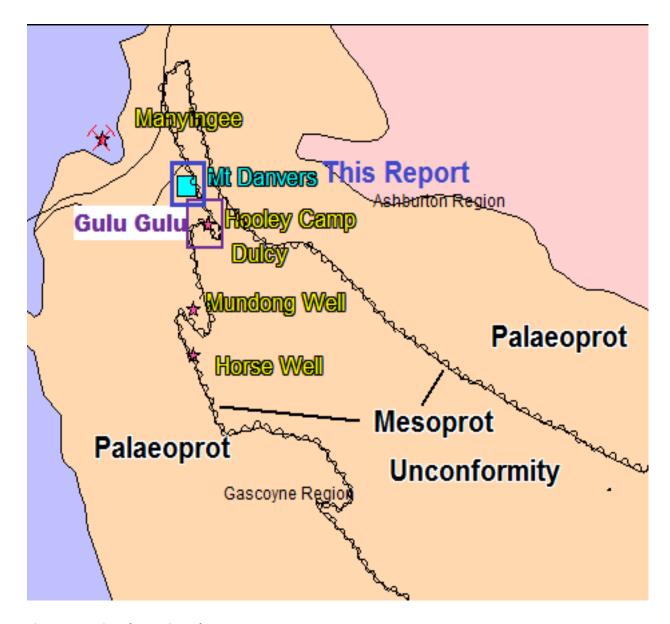


Figure1: Regional Location Plan

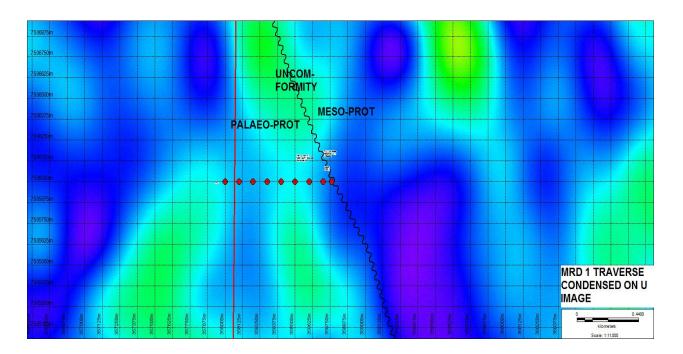


Figure 2: MD 1 Drill Traverse Condensed on Uranium Airborne Image

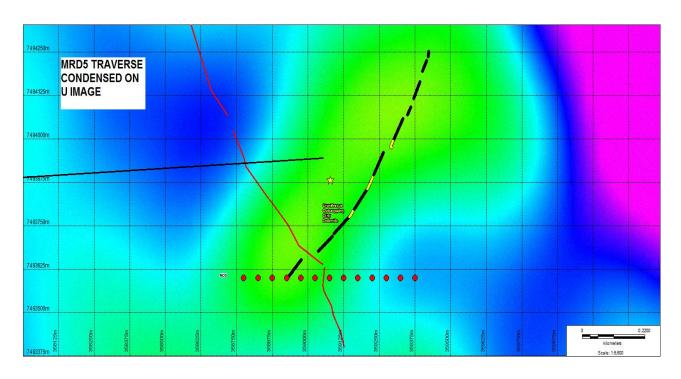


Figure 3: MD 5 Drill Traverse Condensed on Uranium Airborne Image

TABLE 1: DRILL HOLE SUMMARY

HOLE ID	EAST	NORTH	DIP	AZIMUTH	END OF HOLE DEPTH (M)	ВОСО	TO FRESH ROCK (M)	WATER DEPTH (M)
MDRC001	358760	7506000	-60	90	48	2	14	9
MDRC002	358700	7506000	-60	90	48	5	29	7
MDRC003	358600	7506000	-60	90	48	11	25	15
MDRC004	358500	7506000	-60	90	48	10	23	15
MDRC005	358400	7506000	-60	90	48	12	23	15
MDRC006	358300	7506000	-60	90	48	23	36	15
MDRC007	358200	7506000	-60	90	48	23	30	16
MDRC008	358100	7506000	-60	90	48	24	32	16
MDRC009	358000	7506000	-60	90	48	23	29	16
MDRC010	359375	7493600	-60	90	120	5	42	14
MDRC011	359325	7493600	-60	90	100	7	44	18
MDRC012	359275	7493600	-60	90	100	4	27	15
MDRC013	359225	7493600	-60	90	100	3	32	15
MDRC014	359175	7493600	-60	90	100	2	38	18
MDRC015	359125	7493600	-60	90	100	2	18	42
MDRC016	359075	7493600	-60	90	100	3	30	12
MDRC017	359025	7493600	-60	90	100	2	23	16
MDRC018	358975	7493600	-60	90	100	2	38	19
MDRC019	358925	7493600	-60	90	100	2	46	15
MDRC020	358875	7493600	-60	90	100	2	20	15
MDRC021	358825	7493600	-60	90	100	2	23	12
MDRC022	358775	7493600	-60	90	100	7	18	15
TOTAL	22 HOLES				1,752			

TABLE 2: BEST IN HOLE OF SELECTED ELEMENTS

HOLE ID	EAST	NORTH	GAMMA (DEPTH)	U (PPM)	Pb (PPM)	S (PPM)	Cu (PPM)	Au (PPB)
MDRC001	358760	7506000	238 (45)	NO				
				SAMPLES				
MDRC002	358700	7506000	210 (33)	NO				
				SAMPLES				
MDRC003	358600	7506000	185 (48)	NO				
				SAMPLES				
MDRC004	358500	7506000	193 (25)	NO				
				SAMPLES				
MDRC005	358400	7506000	199 (37)	NO				
				SAMPLES				
MDRC006	358300	7506000	177 (9)	0.84	32.5	945	113	6.3
MDRC007	358200	7506000	216 (32)	2.75	9	471	52.7	0.6
MDRC008	358100	7506000	217 (43)	NO				
				SAMPLES				
MDRC009	358000	7506000	211(33)	NO				
				SAMPLES				
MDRC010	359375	7493600	563 (107)	202	350	39300	248	39.3
MDRC011	359325	7493600	497 (36)	85.4	1320	14600	213	2.9
MDRC012	359275	7493600	254 (56)	6.38	8370	21000	13.3	1.3
MDRC013	359225	7493600	284 (99)	5.33	1360	1650	64.3	0.7
MDRC014	359175	7493600	225 (5)	8.93	168	1650	76	1.5
MDRC015	359125	7493600	215 (98 94)	212	19.6	502	98.6	0.9
MDRC016	359075	7493600	171 (58)	13.4	746	1060	186	1.6
MDRC017	359025	7493600	191 (100)	3.88	180	1290	97.4	1.8
MDRC018	358975	7493600	199 (27)	4.25	1480	1360	144	1.4
MDRC019	358925	7493600	308 (58)	11.9	1520	1900	214	5.4
MDRC020	358875	7493600	275 (30)	17.8	6710	2890	446	4.6
MDRC021	358825	7493600	270 (23)	2.99	15.7	7330	282	4.7
MDRC022	358775	7493600	269 (22, 77)	2.3	13.8	2170	48.9	1.2

Note:

- All assays conducted by LabWest Laboratories in Malaga, WA.
- Assay technique involves multi-acid microwave digestion followed by ICP-OES/ICP-MS finish
- Au by Aqua-regia digest then WAR40 analysis

TABLE 3: DRILL HOLE MDRC010 U, S & Au VALUES & GAMMA CPS

	Element		Au S		U	GAMMA	
	Units		(ppb) (ppm) 0.5 50		(ppm)	(CPS) BACKGROUND	
Sample ID					0.02		
	From (m)	To (m)	WAR40	MMA01-U	MMA01-U	160	
MD013	24	25	0.6	< 50	6.18	271	
MD014	25	26	3.9	< 50	5.34	315	
MD015	26	27	23.5	< 50	5.98	265	
MD016	27	28	6.8	< 50	5.24	311	
MD017	28	29	39.3	< 50	6.09	279	
MD018	68	72	0.8	< 50	10.1	COMPOSITE	
MD019	72	76	0.6	2300	19.5	COMPOSITE	
MD020	76	80	1.1	4220	26.3	COMPOSITE	
MD021	80	81	1.9	1.73%	98.6	430	
MD022	81	82	1.5	1.79%	202	357	
MD023	82	83	1.3	1.15%	92.0	657	
MD024	83	84	2.9	2160	42.9	332	
MD025	84	85	3.6	843	25.6	321	
MD026	85	86	1.2	5620	23.0	357	
MD027	86	87	1.2	5800	23.3	343	
MD028	87	88	1.1	7080	18.8	336	
MD029	88	89	1.2	4130	18.4	329	
MD030	89	90	2.2	875	20.0	297	
MD031	90	91	2.3	2640	22.0	284	
MD032	91	92	1.2	4300	36.9	268	
MD033	92	93	1.6	7440	89.5	392	
MD034	93	94	1.3	1.27%	78.0	477	
MD035	94	95	3.3	1.32%	57.0	327	
MD036	95	96	< 0.5	7180	23.5	304	
MD037	96	97	2.8	6630	22.4	314	
MD038	97	98	2.2	8900	16.4	298	
MD039	98	99	0.6	1.79%	17.3	324	
MD040	99	100	0.9	1.60%	93.7	350	
MD041	100	101	0.6	6080	60.3	360	
MD042	101	102	0.7	4250	36.6	313	
MD043	102	103	1.1	6320	31.9	328	
MD044	103	104	1.2	7150	54.4	432	
MD045	104	105	1.4	2.29%	65.5	360	
MD046	105	106	5.1	1.07%	39.6	540	
MD047	106	107	1.7	1.36%	180	563	
MD048	107	108	2.1	1.38%	40.9	278	
MD049	108	112	< 0.5	3.71%	21.0	COMPOSITE	
MD050	112	116	1.7	3.66%	13.0	COMPOSITE	
MD051	116	120	1.3	3.93%	11.2	COMPOSITE	