BRN 5.08% 28.0¢ brainchip holdings ltd

Nearly finished. Grant Description Realtime neuromorphic...

  1. 8,180 Posts.
    lightbulb Created with Sketch. 2397
    Nearly finished.   
    Grant Description
    Realtime neuromorphic cyber-agents (cyber-neurort)
    Awardee
    Quantum Ventura
    Grant Program (CFDA)
    81.049 - Office of Science Financial Assistance Program
    Awarding Agency
    Office of Science Consolidated Service Center (Chicago Service Center) (CSC) [DOE - NNSA]
    Funding Agency
    Office of Science (OS) [DOE]
    Place of Performance
    San Jose, California 95113-1780 United States
    Geographic Scope
    Single Zip Code
    Related Opportunity
    None
    Analysis Notes
    Amendment Since initial award the End Date has been extended from 11/21/21 to 04/03/24 and the total obligations have increased 660% from $250,000 to $1,900,000.
    SBIR Details
    Research Type
    STTR Phase II
    Title
    Realtime Neuromorphic Cyber-Agents (Cyber-NeuroRT)
    Abstract
    As part of Phase 1 feasibility study, we evaluated the viability to develop a real-time HPC-scale neuromorphic cyber agent software called Cyber-NeuroRT. We evaluated several scalable neuromorphic techniques to detect and predict cybersecurity threats, compared full precision machine learning models with neuromorphic models and developed an end-to-end Proof of Concept (POC). Upon completion of Phase 2 prototype, we will produce dramatic reductions in latency and power--up to 100x--without sacrificing accuracy. This will enable quicker response times and savings in operating costs. Cyber-NeuroRT will be a real-time neuromorphic processor-based monitoring tool to predict and alert cybersecurity threats and warnings using the Neuromorphic Platforms of Intel Loihi 1 and BrainChip Akida. For our Phase 1 POC development, we used 450,000 Zeek log entries with a mixture of normal and malicious data for training the supervised ML models. As part of our study, we covered the following: Cyber Attack types covered – 8 attack types: backdoor, DDOS, DOS, injection, password, ransomware, scanning and XSS, Source files – Zeek log files and Packet Capture Format files (PCAP) containing both malicious and normal records. We used both Supervised and Unsupervised algorithms. We used algorithms including SNN and CNN-to-SNN conversion with unsupervised learning and supervised learning rules. To build a full-fledged prototype of Cyber-Neuro RT, we plan to transition the proof-of-concept work to scale to a large data set with additional threat types and other datasets from an HPC environment. HPC environments operate at larger scales than traditional IT domains and our solution should be able to monitor and predict events at more than 160,000 inferences per second. Tuning of Spike Neural Networks (SNN) parameters such as precision of weights and number of neurons used are two software parameters to explore. The chip can be tuned between high v. low power modes and performance can be studied as a function of power draw. Evaluation will be performed across a variety of datasets and parameter settings to estimate deployment performance. We will work on efficiency scaling of SNN algorithms in terms of accuracy and hardware metrics like power and energy consumption. Since cybersecurity attack classification is a temporal process, we will leverage recent advancements in the algorithm community to map temporal dynamics of SNNs to recurrent architectures. Further, to adapt to novel attack vectors, we will explore unsupervised learning techniques in a dynamic network architecture where we will grow or shrink the network as and when novel attack vectors arise. We will also perform an algorithm-hardware co-design analysis by ensuring that our algorithm proposals cater to and consider specific constraints from Akida or Loihi processors like network size, bit quantization levels, among others. 3.1 Some of the features of Cyber-NeuroRT prototype shall include: Ability to monitor, predict and provide system wide alerts of impending cybersecurity threats and warnings at scale by collecting and prioritizing data from Zeek logs and PCAP files streamed in real-time or batch. We will expand and refine different training techniques like CNN to SNN conversion, direct backpropagation training through surrogate gradient methods or local unsupervised Spike Timing Dependent Plasticity (STDP) enabled approaches. Compare performance of threat detection between neuromorphic processing vs GPU-based systems and compare between Akida and Intel Loihi processors. Ability to process the data system-wide at an unprecedented scale enabling adaptive, streaming analysis for monitoring and maintaining large-scale scientific computing integrity. Dashboards for security administrators and security analysts.
    Topic Code
    C51-03a
    Solicitation Number
    None
    Status
    (Ongoing)

    Last Modified 3/20/23

    Period of Performance
    2/22/21
    Start Date
    4/3/24
    End Date
    99.0% Complete
 
watchlist Created with Sketch. Add BRN (ASX) to my watchlist
(20min delay)
Last
28.0¢
Change
-0.015(5.08%)
Mkt cap ! $552.2M
Open High Low Value Volume
29.5¢ 30.0¢ 27.5¢ $6.297M 22.13M

Buyers (Bids)

No. Vol. Price($)
44 1370975 27.5¢
 

Sellers (Offers)

Price($) Vol. No.
28.5¢ 1073647 14
View Market Depth
Last trade - 16.10pm 12/11/2024 (20 minute delay) ?
BRN (ASX) Chart
arrow-down-2 Created with Sketch. arrow-down-2 Created with Sketch.