AVZ 0.00% 78.0¢ avz minerals limited

ICE vs FCV vs EV

  1. 34,304 Posts.
    lightbulb Created with Sketch. 8997
    Car purchase cost:
    (In USD)
    * ICE (i.e Toyota Prius): $23k
    * Hydrogen cars (Toyota Mirai): $58k
    * Electric cars (i.e Tesla model 3): $35k


    Running cost per km (petrol, hydrogen, and electric car):

    * ICE (traditional fossil fuel cars): 5.5c per km
    * Hydrogen cars: 9.4c per km
    * Electric vehicles: 2.2c per km



    Bloomberg forecast annual global sales of electric vehicles to reach 28m in 2030, 58m in 2040.


    Hydrogen Cars Have 4× Annual Fuel Cost & 2–70× The Carbon Debt As Electric Vehicles
    April 26th, 2019 by Michael Barnard

    Hydrogen fuel cell cars are the bad idea that refuses to die, zombies revenant from their ~2005 grave, lurching forward into transportation discussions over and over. They are the B-movie monster that rises from the bathtub they were drowned in, only to be killed again in a different way. It’s time again to put a pickaxe into their rotting brain pans.

    Toyota Motor Corp. said Monday it will supply its fuel cell vehicle technology to major Chinese automaker Beijing Automotive Group Co. as it seeks to expand business in the world’s largest auto market by volume.

    Yes, Toyota continues to defibrillate the corpse of its dead technology, something it will continue to do until whichever set of three aging men who committed to it 30 years ago finally shuffle off this mortal coil, taking the need to save face with them.



    An acquaintance recently posted a picture of a retail hydrogen pump in Sacramento on social media. The solitary pump, lonely in its sea of asphalt under a suitably gloomy sky, was charging $16.85 USD per kilogram of hydrogen.

    Why is that important? Well, a kilogram of hydrogen is the energy equivalent of a gallon of gas. Hydrogen fuel cells are about three times as efficient at converting hydrogen to energy as internal combustion engines are at turning gasoline into energy, so you go about three times as far on a kilogram of hydrogen despite it having the same energy. The Toyota Mirai gets about 66 miles per gallon out of its 5 kg fuel tank.

    So really, you are paying about $5.50 to travel the same distance as you could with a $2.50 gallon of gasoline. Hmmm… in a car that costs a lot more than an internal combustion car too.

    That might get better sometime, but maybe not. The best resource I found recently when structuring out an end-to-end air-to-fuel system to show why that’s such a poor idea, especially when fed with natural gas as Carbon Engineering does, is that mass production of clean hydrogen in the best case might get down to $5.00 per kg. That’s just the generation cost. That’s not storage, distribution, or markup, and is not the price a consumer would pay.

    And hydrogen fuel pumps cost a million or two for a couple and more for the storage tanks. They are much more expensive than gas pumps, so hydrogen stations have to mark up the hydrogen a lot more than gas stations have to mark up the gas.

    And those hydrogen stations don’t exist. They all have to be built on somebody’s nickel.

    Meanwhile, making clean hydrogen is energy intensive and you throw away a lot of the energy. Let’s assume they get 10 MWh of electricity from a wind farm. Then they convert water to hydrogen and oxygen with the electricity. High-efficiency PEM electrolysis is about 80% efficient (projected to rise to a theoretical peak of 86%). That takes about 50 kWh per kilogram, so you have a couple of hundred kilograms of hydrogen.

    You’ve thrown away 20% of the electricity and are left with 8 MWh embodied in the hydrogen.

    Then you compress it, store it, ship it, and pump it. All of those things take energy. Let’s say another 10%. So now you have about 8 MWh in the 200 kg of hydrogen that you have spent 11 MWh on far.

    And then you put it in a Toyota Mirai at its best case 60% efficiency and throw away another 40%. That means you get 4.8 MWh of energy out of the 11 MWh you’ve spent. Those 200 kg will allow a Toyota Mirai to drive about about 13,000 miles. Let’s be nice and say the retail price of hydrogen gets down to $10 per kg. That will cost you $2,000 to drive those 13,000 miles.

    What if you put that 11 MWh in to a Tesla Model S P100D? Well, that car travels about 100 miles for every 30 kWh of electricity you feed it. That means 11 MWh will allow a Tesla Model S to drive about 37,000 miles. That’s about three times as far for the same energy input. And the average cost of electricity in the USA (not the night time cost when you actually charge) is 12 cents per kWh, so those 11 MWh will only cost you about $1,300.

    Just to finish this off, the gas car at 28 miles per gallon and 200 gallons will travel about 5,600 miles at a cost of about $500.

    That starts to add up over a year. Let’s see what this all looks like side by side.



    Yeah. The hydrogen-powered Mirai (if you could buy one where you are and if there were hydrogen pumps where you wanted to go, and neither of those things are true) would cost you about four times what just using the electricity would cost and almost twice what just driving a gas car would cost (and hydrogen cars are expensive of course).

    Of course, this is the nicest possible way of making hydrogen. Most of it actually comes from steam reformation of natural gas, which has a CO2 debt of its own. The sourceI quickly found for steam reformation of hydrogen indicates that industrial processes emit 25,808 kgs of CO2 for every 2,551 kgs of hydrogen produced. As the authors from the Gas Research Division, Research Institute of Petroleum note: “In most cases CO2 is purged to the atmosphere because of its useless and harmful nature.“ So that’s not good. What does that look like over a year?

    Gasoline produces about 9.1 kg of CO2 for every gallon. Wind energy produces about 8 kg per MWh full lifecycle including all mining, refinement, manufacturing, distribution, construction, operation and decommissioning (and that’s getting better as more of those elements decarbonize).



    Yeah, hydrogen from steam reformation of natural gas is still better than burning gasoline, but that’s still a couple of tons of CO2 from the hydrogen process. And then you look at the wind energy (or solar) going into a Tesla battery and you say, wait a minute. Is that right? Would it really be that much better for the planet to drive a Tesla instead? And that much cheaper too?

    Yes and yes.

    Even if you just plugged into the wall in California, you’d still only be around 1,200 kg of CO2 per year and improving annually. CAISO just announced that California exceeded 100% of net demand from carbon-neutral electricity sources (wind, solar, hydro, and nuclear) for a bit over an hour on April 21, 2019. There are provisos on that, in that it was a low-demand period during the shoulder season, but that was 17 GW of low-carbon electricity pumping through the wires of California. If you’d been recharging your Tesla then, you would have been averaging about 12 kg CO2 per MWh, and you’d be under 50 kg CO2 for the year.

    Gas stations make a couple of grand a week on gas typically, running about 3% profit margin on gasoline. Hydrogen pumps and tanks cost millions. Gas stations in cities are a dying breed because the only way for land that valuable to pay for itself is to build upward, and refueling stations with highly flammable substances require their own, single-story footprint. There’s no way to square that circle.

    There are other reasons, but this is the reality of hydrogen for cars. It’s a dumb idea economically for individuals and it’s a dumb idea for the environment too.

    It’s much, much better to decarbonize the grid and put that electricity into cars than into hydrogen. The slipperiest molecule might have a 3-4% transportation play in larger form factors (and maybe it will hold onto its forklift market for a while longer), but for cars it makes no sense.



    Speaking of total system losses, you didn’t think I’d finish up without putting a nice little bow on the overall picture, did you? Looking at the best-case FCV efficiency today compared to the current state of BEV technology being used by Tesla’s vehicles, the efficiency of FCVs is less than half that of a BEV.



    Electric vehicles stack up best
    Based on a wide scan of studies globally, we found that battery electric vehicles have significantly lower energy losses compared to other vehicle technologies. Interestingly, however, the well-to-wheel losses of hydrogen fuel cell vehicles were found to be almost as high as fossil fuel vehicles.



    Average well-to-wheel energy losses from different vehicle drivetrain technologies, showing typical values and ranges. Note: these figures account for production, transport and propulsion, but do not capture manufacturing energy requirements, which are currently marginally higher for electric and hydrogen fuel cell vehicles compared to fossil fuel vehicles.
    At first, this significant efficiency difference may seem surprising, given the recent attention on using hydrogen for transport.

    Read more: How hydrogen power can help us cut emissions, boost exports, and even drive further between refills

    While most hydrogen today (and for the foreseeable future) is produced from fossil fuels, a zero-emission pathway is possible if renewable energy is used to:

    Herein lies one of the significant challenges in harnessing hydrogen for transport: there are many more steps in the energy life cycle process, compared with the simpler, direct use of electricity in battery electric vehicles.

    Each step in the process incurs an energy penalty, and therefore an efficiency loss. The sum of these losses ultimately explains why hydrogen fuel cell vehicles, on average, require three to four times more energy than battery electric vehicles, per kilometre travelled.

    Electricity grid impacts
    The future significance of low energy efficiency is made clearer upon examination of the potential electricity grid impacts. If Australia’s existing 14 million light vehicles were electric, they would need about 37 terawatt-hours (TWh) of electricity per year — a 15% increase in national electricity generation (roughly equivalent to Australia’s existing annual renewable generation).

    But if this same fleet was converted to run on hydrogen, it would need more than four times the electricity: roughly 157 TWh a year. This would entail a 63% increase in national electricity generation.

    A recent Infrastructure Victoria report reached a similar conclusion. It calculated that a full transition to hydrogen in 2046 – for both light and heavy vehicles – would require 64 TWh of electricity, the equivalent of a 147% increase in Victoria’s annual electricity consumption. Battery electric vehicles, meanwhile, would require roughly one third the amount (22 TWh).

    DYOR.
 
watchlist Created with Sketch. Add AVZ (ASX) to my watchlist
arrow-down-2 Created with Sketch. arrow-down-2 Created with Sketch.