CNM carnegie corporation limited

interesting to no what else goes on

  1. 1,528 Posts.
    lightbulb Created with Sketch. 25
    http://globalwaterandpower.com/?page_id=98

    Wave power is the transport of energy by ocean surface waves, and the capture of that energy to do useful work — for example for electricity generation, water desalination, or the pumping of water (into reservoirs). Wave power is a renewable energy source. Though often co-mingled, wave power is distinct from the diurnal flux of tidal power and the steady gyre of ocean currents. Wave power generation is not currently a widely employed commercial technology although there have been attempts at using it since at least 1890. The world’s first commercial wave farm is based in Portugal, at the Aguçadora Wave Park, which consists of three 750 kilowatt Pelamis devices.

    Deep water wave power resources are truly enormous, between 1 TW and 10 TW, but it is not practical to capture all of this. The useful world-wide resource has been estimated to be greater than 2 TW. Locations with the most potential for wave power include; the western seaboard of Europe, the northern coast of the UK and the Pacific coastlines of North and South America, Southern Africa, Australia and New Zealand. The north and south temperate zones have the best sites for capturing wave power. The prevailing westerlies in these zones blow strongest in winter.



    Pelamis, Agucadoura Wave Park
    Wave Dragon



    Modern technology
    Wave power devices are generally categorized by the method used to capture the energy of the waves. They can also be categorized by location and power take-off system. Method types are point absorber or buoy; surfacing following or attenuator; terminator, lining perpendicular to wave propagation; oscillating water column; and overtopping. Locations are shoreline, nearshore and offshore. Types of power take-off include: hydraulic ram, elastomeric hose pump, pump-to-shore, hydroelectric turbine, air turbine, and linear electrical generator. Some of these designs incorporate parabolic reflectors as a means of increasing the wave energy at the point of capture. These are descriptions of some wave power systems:

    In the United States, the Pacific Northwest Generating Cooperative is funding the building of a commercial wave-power park at Reedsport, Oregon. The project will utilize the PowerBuoy technology Ocean Power Technologies which consists of modular, ocean-going buoys. The rising and falling of the waves moves the buoy-like structure creating mechanical energy which is converted into electricity and transmitted to shore over a submerged transmission line. A 40 kW buoy has a diameter of 12 feet (4 m) and is 52 feet (16 m) long, with approximately 13 feet of the unit rising above the ocean surface. Using the three-point mooring system, they are designed to be installed one to five miles (8 km) offshore in water 100 to 200 feet (60 m) deep.

    An example of a surface following device is the Pelamis Wave Energy Converter. The sections of the device articulate with the movement of the waves, each resisting motion between it and the next section, creating pressurized oil to drive a hydraulic ram which drives a hydraulic motor. The machine is long and narrow (snake-like) and points into the waves; it attenuates the waves, gathering more energy than its narrow profile suggests. Its articulating sections drive internal hydraulic generators (through the use of pumps and accumulators).

    With the Wave Dragon wave energy converter large “arms” focus waves up a ramp into an offshore reservoir. The water returns to the ocean by the force of gravity via hydroelectric generators.

    The AquaBuOY, made by Finavera Renewables Inc., wave energy device: Energy transfer takes place by converting the vertical component of wave kinetic energy into pressurized seawater by means of two-stroke hose pumps. Pressurized seawater is directed into a conversion system consisting of a turbine driving an electrical generator. The power is transmitted to shore by means of a secure, undersea transmission line. A commercial wave power production facility utilizing the AquaBuOY technology is beginning initial construction in Portugal. The company has 250 MW of projects planned or under development on the west coast of North America.

    The SeaRaser, build by Alvin Smith; which uses a entirely new technique (pumping) for gathering the wave energy.

    A device called CETO, currently being tested off Fremantle, Western Australia, consists of a single piston pump attached to the sea floor, with a float tethered to the piston. Waves cause the float to rise and fall, generating pressurized water, which is piped to an onshore facility to drive hydraulic generators or run reverse osmosis water desalination.

    Another type of wave buoys,using special polymeres, is being developed by SRI
 
Add to My Watchlist
What is My Watchlist?
A personalised tool to help users track selected stocks. Delivering real-time notifications on price updates, announcements, and performance stats on each to help make informed investment decisions.

Currently unlisted public company.

arrow-down-2 Created with Sketch. arrow-down-2 Created with Sketch.