ATH alterity therapeutics limited

Iron chelation helps in subarachnoidal hemorrhage, a mouse study

  1. 3,119 Posts.
    lightbulb Created with Sketch. 1160
    Subarachnoidal hemorrhage is a severe disease, early mortality is over 40%, and those who will survive often have many symptoms. I predict that iron chelation would help control these late symptoms as it did in this mouse study. Over 40 percent of people who have had a subarachnoid hemorrhage have cognitive impairment that affects their quality of life. So again another patient group where ATH434 could work after it gets approved by FDA. Over a year to see the efficacy and safety in the randomized study but only half a year, or less (?) in the nonrandomized phase 2 biometric study.


    . 2023 Sep 7.
    doi: 10.1007/s12035-023-03525-2. Online ahead of print.

    Deferoxamine Mitigates Ferroptosis and Inflammation in Hippocampal Neurons After Subarachnoid Hemorrhage by Activating the Nrf2/TXNRD1 Axis

    Affiliations
    • PMID: 37676391
    DOI: 10.1007/s12035-023-03525-2

    Abstract

    Ferroptosis is a distinct peroxidation-driven form of cell death tightly involved in subarachnoid hemorrhage (SAH). This study delved into the mechanism of deferoxamine (DFO, an iron chelator) in SAH-induced ferroptosis and inflammation. SAH mouse models were established by endovascular perforation method and injected intraperitoneally with DFO, or intraventricularly injected with the Nrf2 pathway inhibitor ML385 before SAH, followed by detection of neurological function, blood-brain barrier (BBB) permeability, and brain water content. Apoptotic level of hippocampal neurons, symbolic changes of ferroptosis, and levels of pro-inflammatory cytokines were assessed using TUNEL staining, Western blotting, colorimetry, and ELISA. The localization and expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) were detected. HT22 cells were exposed to Hemin as in vitro SAH models and treated with FIN56 to induce ferroptosis, followed by evaluation of the effects of DFO on FIN56-treated HT22 cells. The regulation of Nrf2 in thioredoxin reductase 1 (TXNRD1) was analyzed by co-immunoprecipitation and Western blotting. Moreover, HT22 cells were treated with DFO and ML385 to identify the role of DFO in the Nrf2/TXNRD1 axis. DFO extenuated brain injury, and ferroptosis and inflammation in hippocampal neurons of SAH mice. Nrf2 localized at the CA1 region of hippocampal neurons, and DFO stimulated nuclear translocation of Nrf2 protein in hippocampal neurons of SAH mice. Additionally, DFO inhibited ferroptosis and inflammatory responses in FIN56-induced HT22 cells. Nrf2 positively regulated TXNRD1 protein expression. Indeed, DFO alleviated FIN56-induced ferroptosis and inflammation via activation of the Nrf2/TXNRD1 axis. DFO alleviated neurological deficits, BBB disruption, brain edema, and brain injury in mice after SAH by inhibiting hippocampal neuron ferroptosis via the Nrf2/TXNRD1 axis. DFO ameliorates SAH-induced ferroptosis and inflammatory responses in hippocampal neurons by activating the Nrf2/TXNRD1 axis.


 
Add to My Watchlist
What is My Watchlist?
A personalised tool to help users track selected stocks. Delivering real-time notifications on price updates, announcements, and performance stats on each to help make informed investment decisions.
(20min delay)
Last
1.1¢
Change
0.000(0.00%)
Mkt cap ! $119.6M
Open High Low Value Volume
1.1¢ 1.1¢ 1.0¢ $46.86K 4.283M

Buyers (Bids)

No. Vol. Price($)
64 25268416 1.0¢
 

Sellers (Offers)

Price($) Vol. No.
1.1¢ 18128695 9
View Market Depth
Last trade - 16.10pm 19/09/2025 (20 minute delay) ?
ATH (ASX) Chart
arrow-down-2 Created with Sketch. arrow-down-2 Created with Sketch.