RAC 1.55% $1.31 race oncology ltd

Zantrene: A brief review BackgroundZantrene is owned by Race...

  1. 830 Posts.
    lightbulb Created with Sketch. 9075

    Zantrene: A brief review


    Background


    Zantrene is owned by Race Oncology (RAC). Developed in the late 1970s to be an anthracycline that is safer for the heart, Zantrene was tested clinically through the 80s and 90s in a range of different blood and solid tumors. While not demonstrating strong clinical efficacy in solid tumors, Zantrene showed some promise in AML (Table 1), Follicular Lymphoma (ORR 56%; CR 31%; PR 25%; n = 16), and Breast cancer (1-4). The AML data led to the drug eventually being approved for use in France, but was never marketed. Due to a series of internal events, the drug was lost and never fully commercialized.


    Table 1: A summary of AML trials

    https://hotcopper.com.au/data/attachments/4393/4393140-ac3bff401f3ff399de1359d555e83888.jpg


    In 2016, RAC bought rights to the drug, and completed a P2 proof of concept trial, where there was a 40% ORR (1CR; 3PR) (5). Of the 10 heavily pretreated R/R AML patients, four were classified as extramedullary AML which was the patient population that achieved objective responses (100%). Figure 1 shows an excellent PET scan of a patient’s response to Zantrene.


    UiS4uSGj5EocAp8cYh1TtkeWpcKtO4zFdzuw7A_fbgzqJRETOjDYVx5dNc68doIKG-ZYsLTJc3dnCmma0dpdEmrwFXKrLp-IcCBsSUxnC7F3s2AfECnSpkkbYLic4B4sJ_dGpn4JnSmvv2tJ6A

    Figure 1: PET scan of EMD AML patient treated with Zantrene


    In 2020, the City of Hope discovered that Zantrene is in fact the most potent inhibitor of the m6A demethylase ‘Fat mass and obesity-associated protein’ or ‘FTO’ protein (6). The screening process investigated some ~250,000 different compounds within the library, and currently preclinical compounds are yet to match the potency of Zantrene for FTO (Table 2).


    Table 2: Low nM concentration FTO targeting compounds

    https://hotcopper.com.au/data/attachments/4393/4393136-48dc216a27dd8764574fc7b650c02f96.jpg


    There has, therefore, been a shift in thinking regarding Zantrene as a safer anthracycline to the most potent FTO inhibitor, where all of the clinical data to date can and should be attributed to FTO inhibition over anthracycline activity. Looking through the lens of an FTO inhibitor highlights key pieces of preclinical and clinical data as well as challenges the preconceived notions surrounding Zantrene. Many lines of evidence support this line of thinking, which will be summarized herein.


    1. https://www.raceoncology.com/wp-content/uploads/2020/08/the-rediscovery-of-bisantrene-a-review-of-the-literature-ijcrt-17-015.pdf
    2. https://pubmed.ncbi.nlm.nih.gov/3581102/
    3. https://pubmed.ncbi.nlm.nih.gov/3791560/
    4. https://pubmed.ncbi.nlm.nih.gov/1875415/
    5. https://pubmed.ncbi.nlm.nih.gov/33159365/
    6. https://pubmed.ncbi.nlm.nih.gov/32531268/

    Preclinical models supporting strong FTO inhibition and poor anthracycline activity


    As previously mentioned, Zantrene is currently the most potent inhibitor of the FTO protein. Early preclinical models investigating Zantrene in comparison to other anthracyclines highlight the poor anthracycline activity of the drug. In historic preclinical studies conducted in the 80s, Zantrene was found to have IC50 values for anthracycline activity at uM concentrations, far greater than the nM concentrations achieved for FTO inhibition. In comparison to other approved Anthracyclines (Mitoxantrone & Doxorubicin) as well as compounds that did not achieve approval (Ametantrone), Zantrene was found to perform far worse in preclinical leukemia studies (1-2). If Zantrene was the worst performer of all drugs preclinically, then how was it able to achieve clinically relevant ORR rates that led to approval in France. Comparatively, Zantrene is roughly 126 times more potent at inhibiting FTO than functioning as an FTO inhibitor.


    btQaBjsEN5TogDfaumsij0FxMGMJ26I7SUpsltgfShQ6KvyLvbj2vlvfUGbj9VVWf5FEQhb8GFelEOGjZHElRLz5LVuriM7anXw8zP69WfdzR8G-oIlT_eM4xpQSNkl9U2Evn5DAFaT8qsVmjQ

    92_oxAUqV4yV8rDaM_bKK2EzEdRB3aE-L5UJhNnA8jOUDLKOk1j_TPS5ptVoX3Scl3qYQO-9BSPxf98TDqCIcFYZgcxiJsIakWtV_4-d2KvaKQ_FQZj2ou67uVrGarJMzbcG9p0iY9MMJRM4zQ

    Figure 2: Zantrene (Bisantrene) demonstrating poor anthracycline activity


    Further preclinical work has been completed by RAC to confirm the mechanism of action for Zantrene. A recent Melanoma publication showed that Zantrene can kill cells with a very low nM concentration and that the cell killing affinity correlated with FTO expression (Figure 3; 3). Also, further preclinical work into ccRCC demonstrated low nM cell killing in a range of different renal cell models (Figure 4; 4).


    _1iapJsymBgvkZE1OUzU6nO-Vld-iOixs-ZZXsBB2na35S_s5P3TMSEqxyoKQay2VvUJPhm9wPq34qpl26KPdI7qGL6BIYM9yJ3NwF1qBUaQCHuWN4vE_NI-aPzGZSWxpmlQXceEE86Qe-K3IAitpqsQldSZcI13aqHNPVGWo7zQqIbPwYDJ_wlsKOS_VWTnqFnv0RXPiz4-LDM5zeafErlCGMtV2w-wX_089sl6cqumaJbB5yI5U8x1YpO0YzUgEoQ9VrNOl1UQjqc1zPppec54GF1K65pG7A5Q

    Figure 3: Melanoma Zantrene data


    N62pOG6l47wmFtvrOJajXjV4sn8aiGbudmSRCxwQ3lKSjjY85cC02GTekaIG9ZoG0OwMBKvy81c_CCzwQjxj_zgJPr-C0POKCMoq9tLPKkbgT1P0-1M7hBYcf32W46fsaBUGQd4SMvY9_BIztw

    Figure 4: Summary of sensitivity of Zantrene to renal cell lines


    1. https://pubmed.ncbi.nlm.nih.gov/4027978/
    2. https://pubmed.ncbi.nlm.nih.gov/6850582/
    3. https://cdn-api.markitdigital.com/apiman-gateway/CommSec/commsec-node-api/1.0/event/document/1410-02428461-09TIE9PC8M4UP8UMCSE73N1KTJ/pdf?access_token=0007HuJhseAUUhC12ZlEhQAzuY6O
    4. https://cdn-api.markitdigital.com/apiman-gateway/CommSec/commsec-node-api/1.0/event/document/1410-02497549-2JQ1UC1MAC8L9I5V5CVRK309DN/pdf?access_token=0007HuJhseAUUhC12ZlEhQAzuY6O

    Clinical data supporting FTO inhibition


    I have made quite compelling summaries of the historic data and the possible influence of Zantrene as an FTO inhibitor in the following posts on social media. Put simply, there are some unusual findings when Zantrene is used; unlike the typical Anthracycline outcome. Without the FTO knowledge, these phenomena are difficult to explain, but when FTO inhibition is applied, I find there to be some interesting interpretations of the data.


    https://hotcopper.com.au/threads/pillar-1-fto-new-thread.5839654/page-878?post_id=52698342

    https://hotcopper.com.au/threads/pillar-1-fto-new-thread.5839654/page-1247?post_id=54368862


    The FTO opportunity


    I stopped gathering this data back in early February 2022, but there are 106 articles linking aberrant FTO expression to 28 different cancer types (Table 3) (1-106).


    Table 3: Cancers linked to FTO expression

    https://hotcopper.com.au/data/attachments/4393/4393129-83202f78908384ef0f8b81e4f15f806a.jpg


    Additionally, there have been multiple papers that have found FTO inhibition synergies with roughly 16 different approved and unapproved chemotherapies (Table 4) (107-131), and FTO expression has been linked to a plethora of diseases including metabolic, neurological, and reproductive (Table 5) (132-217). This is likely due to the central role of FTO in regulating the intracellular methylation/demethylation of m6A mRNA and the cascading effects on genes, proteins, and thus, cellular function in a range of different cells.


    Table 4: Summary of synergies with an FTO inhibitor

    https://hotcopper.com.au/data/attachments/4393/4393123-2737d779d84f9b775341dc3437664e5a.jpg


    Table 5: Summary of diseases associated with aberrant FTO expression

    https://hotcopper.com.au/data/attachments/4393/4393113-f8b4ef541b6519dae3ea38344c3bf0f9.jpg


    1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234852/
    2. https://www.cell.com/cancer-cell/pdfExtended/S1535-6108(20)30216-6
    3. https://pubmed.ncbi.nlm.nih.gov/29249359/
    4. https://www.researchsquare.com/article/rs-897609/v1
    5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812656/pdf/nihms-1053837.pdf
    6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058711/
    7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218444/
    8. https://www.frontiersin.org/articles/10.3389/fonc.2022.817584/
    9. https://www.smartscitech.com/index.php/RD/article/view/246
    10. https://www.nature.com/articles/s41467-021-22469-6.pdf
    11. https://ashpublications.org/blood/article/134/Supplement_1/114/426565
    12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714266/
    13. https://www.smartscitech.com/index.php/RD/article/view/246
    14. https://onlinelibrary.wiley.com/doi/pdf/10.1002/ctm2.310
    15. https://www.aging-us.com/article/202359/pdf
    16. https://www.mdpi.com/2673-7523/1/1/2
    17. https://www.nature.com/articles/s41420-021-00724-5
    18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938613/
    19. https://pubmed.ncbi.nlm.nih.gov/30922314/
    20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452952/
    21. https://www.sciencedirect.com/science/article/pii/S2211383521003385
    22. https://pubmed.ncbi.nlm.nih.gov/32089015/
    23. https://academic.oup.com/bjs/article/108/Supplement_1/znab117.028/6255842
    24. https://www.tandfonline.com/doi/full/10.1080/21655979.2021.1924544
    25. https://www.researchgate.net/publication/358083969
    26. https://pubmed.ncbi.nlm.nih.gov/32817424/
    27. https://pubmed.ncbi.nlm.nih.gov/29315835/
    28. https://pubmed.ncbi.nlm.nih.gov/31827395/
    29. https://reader.elsevier.com/reader/sd/pii/S2372770521000991
    30. https://www.sciencedirect.com/science/article/pii/S2372770521000991
    31. https://www.researchgate.net/publication/349092260
    32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218444/
    33. https://pubmed.ncbi.nlm.nih.gov/33910046/
    34. https://www.sciencedirect.com/science/article/pii/S0006291X20313711
    35. https://pubmed.ncbi.nlm.nih.gov/33183350/
    36. https://pubmed.ncbi.nlm.nih.gov/33533172/
    37. https://www.frontiersin.org/articles/10.3389/fcell.2021.715674/full
    38. https://www.europeanreview.org/wp/wp-content/uploads/8220-8226.pdf
    39. https://pubmed.ncbi.nlm.nih.gov/22222214/
    40. https://pubmed.ncbi.nlm.nih.gov/26884084/
    41. https://pubmed.ncbi.nlm.nih.gov/33103587/
    42. https://pubmed.ncbi.nlm.nih.gov/34347888/
    43. https://pubmed.ncbi.nlm.nih.gov/32035950/
    44. https://jeccr.biomedcentral.com/articles/10.1186/s13046-021-02096-1
    45. https://www.researchsquare.com/article/rs-589523/v2
    46. https://www.researchsquare.com/article/rs-907813/v1
    47. https://www.researchgate.net/publication/337248777
    48. https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(21)00648-1
    49. https://www.nature.com/articles/s41388-021-01939-7
    50. https://pubmed.ncbi.nlm.nih.gov/28849183/
    51. https://www.sciencedirect.com/science/article/pii/S0024320521005075?via%3Dihub
    52. https://www.nature.com/articles/s41417-020-0193-8
    53. https://pubmed.ncbi.nlm.nih.gov/33393595/
    54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086255/
    55. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282183/
    56. https://www.nature.com/articles/s41416-021-01581-w
    57. https://www.nature.com/articles/s41419-022-04503-7
    58. https://www.cell.com/cancer-cell/pdfExtended/S1535-6108(20)30216-6
    59. https://pubmed.ncbi.nlm.nih.gov/29249359/
    60. https://pubmed.ncbi.nlm.nih.gov/28297667/
    61. https://pubs.acs.org/doi/10.1021/acschembio.0c00841
    62. https://pubmed.ncbi.nlm.nih.gov/32680921/
    63. https://pubmed.ncbi.nlm.nih.gov/34390075/
    64. https://www.nature.com/articles/s41598-019-49550-x
    65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332506/
    66. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235215/
    67. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422133/
    68. https://onlinelibrary.wiley.com/doi/full/10.1002/jcla.24113
    69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627861/
    70. https://www.frontiersin.org/articles/10.3389/fonc.2020.00718/full
    71. https://pubmed.ncbi.nlm.nih.gov/34354868/
    72. https://onlinelibrary.wiley.com/doi/10.1002/cam4.4188
    73. https://atm.amegroups.com/article/view/81771/html
    74. https://www.dovepress.com/the-rna-n6-methyladenosine-demethylase-fto-promotes-head-and-neck-squa-peer-reviewed-fulltext-article-IJGM
    75. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789218/
    76. https://pubmed.ncbi.nlm.nih.gov/33738268/
    77. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989706/
    78. https://www.aging-us.com/article/203456/text
    79. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213471/
    80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283020/
    81. https://www.researchsquare.com/article/rs-778749/v1
    82. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565892/pdf/ijgm-14-7411.pdf
    83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035887/
    84. https://pubmed.ncbi.nlm.nih.gov/30905413/
    85. https://www.sciencedirect.com/science/article/abs/pii/S0006291X1831252X
    86. https://www.frontiersin.org/articles/10.3389/fonc.2021.763027/full
    87. https://www.cell.com/molecular-therapy-family/oncolytics/fulltext/S2372-7705(21)00061-9
    88. https://www.biorxiv.org/content/10.1101/2021.07.06.451216v1.full.pdf
    89. https://www.hindawi.com/journals/ecam/2021/1436088/
    90. https://www.jbc.org/action/showPdf?pii=S0021-9258%2822%2900003-5
    91. https://www.nature.com/articles/s41467-019-10669-0
    92. https://pubmed.ncbi.nlm.nih.gov/33910046/
    93. https://assets.researchsquare.com/files/rs-983314/v1/09f8aafb-8360-4f60-97ae-e7526cb3372c.pdf?c=1634843062
    94. https://www.nature.com/articles/s41388-022-02214
    95. https://pubmed.ncbi.nlm.nih.gov/32825930/
    96. https://atm.amegroups.com/article/view/87556/pdf
    97. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548690/
    98. https://pubmed.ncbi.nlm.nih.gov/30719115/
    99. https://www.cell.com/cancer-cell/pdfExtended/S1535-6108(20)30216-6
    100. https://bmccancer.biomedcentral.com/articles/10.1186/s12885-021-08550-9
    101. https://pubmed.ncbi.nlm.nih.gov/34744452/
    102. https://cancerres.aacrjournals.org/content/79/13_Supplement/179
    103. https://www.nature.com/articles/s41388-021-01820-7
    104. https://onlinelibrary.wiley.com/doi/10.1002/cam4.4188
    105. https://pubmed.ncbi.nlm.nih.gov/34779644/
    106. https://cancerci.biomedcentral.com/articles/10.1186/s12935-021-02090-9
    107. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136921/
    108. https://www.nature.com/articles/s41467-019-10669-0
    109. https://www.sciencedirect.com/science/article/pii/S0006291X20313711
    110. https://www.sciencedirect.com/science/article/abs/pii/S1535610820302166
    111. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218444/
    112. https://mcr.aacrjournals.org/content/early/2021/02/09/1541-7786.MCR-20-0541
    113. https://pubmed.ncbi.nlm.nih.gov/29315835/
    114. https://pubmed.ncbi.nlm.nih.gov/32680921/
    115. https://jeccr.biomedcentral.com/track/pdf/10.1186/s13046-021-01942-6.pdf
    116. https://onlinelibrary.wiley.com/doi/10.1002/cam4.4188
    117. https://www.cell.com/cancer-cell/pdfExtended/S1535-6108(20)30216-6
    118. https://pubmed.ncbi.nlm.nih.gov/29249359/
    119. https://pubmed.ncbi.nlm.nih.gov/29315835/
    120. https://portlandpress.com/bioscirep/article/41/1/BSR20200842/227460/Omeprazole-improves-chemosensitivity-of-gastric
    121. https://www.biorxiv.org/content/10.1101/2021.01.12.426354v1.full.pdf
    122. https://www.raceoncology.com/md-anderson-cancer-center-researchers-publish-aml-preclinical-study-on-bisantrene-drug-combinations/
    123. https://pubmed.ncbi.nlm.nih.gov/29249359/
    124. https://www.raceoncology.com/md-anderson-cancer-center-researchers-publish-aml-preclinical-study-on-bisantrene-drug-combinations/
    125. https://pubmed.ncbi.nlm.nih.gov/8259097/
    126. https://cdn-api.markitdigital.com/apiman-gateway/CommSec/commsec-node-api/1.0/event/document/1410-02463955-1DOHC0VF6VO6KDECS48J2FT4LV/pdf?access_token=0007UA1Q914uMqat2flB1pWo6Lv5
    127. https://www.tandfonline.com/doi/pdf/10.1080/10428194.2022.2042689?needAccess=true
    128. https://www.tandfonline.com/doi/pdf/10.1080/10428194.2022.2042689?needAccess=true
    129. https://pubmed.ncbi.nlm.nih.gov/29249359/
    130. https://www.nature.com/articles/s43018-021-00223-7
    131. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343999/#SM0
    132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658005/
    133. https://pubmed.ncbi.nlm.nih.gov/20943749/
    134. https://pubmed.ncbi.nlm.nih.gov/29456697/
    135. https://www.mdpi.com/2072-6643/13/5/1683
    136. https://pubmed.ncbi.nlm.nih.gov/19005641/
    137. https://pubmed.ncbi.nlm.nih.gov/30137347/
    138. https://pubmed.ncbi.nlm.nih.gov/25303482/
    139. https://pubmed.ncbi.nlm.nih.gov/30170548/
    140. https://pubmed.ncbi.nlm.nih.gov/28603074/
    141. https://www.sciencedirect.com/science/article/pii/S1319562X21004617#!
    142. https://www.sciencedirect.com/science/article/pii/S0039128X21001094
    143. https://link.springer.com/article/10.1007/s13410-021-00974-0
    144. https://pubmed.ncbi.nlm.nih.gov/17496892/
    145. https://pubmed.ncbi.nlm.nih.gov/19234441/
    146. https://pubmed.ncbi.nlm.nih.gov/25881961/
    147. https://pubmed.ncbi.nlm.nih.gov/25412662/
    148. https://pubmed.ncbi.nlm.nih.gov/24518103/
    149. https://science.sciencemag.org/content/372/6546/1085
    150. https://pubmed.ncbi.nlm.nih.gov/27827997/
    151. https://pubmed.ncbi.nlm.nih.gov/21919686/
    152. https://pubmed.ncbi.nlm.nih.gov/27324062/
    153. https://pubmed.ncbi.nlm.nih.gov/23867619/
    154. https://pubmed.ncbi.nlm.nih.gov/28267420/
    155. https://pubmed.ncbi.nlm.nih.gov/34364300/
    156. https://pubmed.ncbi.nlm.nih.gov/30305247/
    157. https://pubmed.ncbi.nlm.nih.gov/29795461/
    158. https://link.springer.com/article/10.1007/s10528-021-10079-2
    159. https://pubmed.ncbi.nlm.nih.gov/19053021/
    160. https://pubmed.ncbi.nlm.nih.gov/19073975/
    161. https://pubmed.ncbi.nlm.nih.gov/23329013/
    162. https://pubmed.ncbi.nlm.nih.gov/24410832/
    163. https://pubmed.ncbi.nlm.nih.gov/27651333/
    164. https://pubmed.ncbi.nlm.nih.gov/29384213/
    165. https://pubmed.ncbi.nlm.nih.gov/22608085/
    166. https://pubmed.ncbi.nlm.nih.gov/26078098/
    167. https://pubmed.ncbi.nlm.nih.gov/33817272/
    168. http://www.ijcem.com/files/ijcem0028249.pdf
    169. https://pubmed.ncbi.nlm.nih.gov/28116842/
    170. https://pubmed.ncbi.nlm.nih.gov/32848374/
    171. https://pubmed.ncbi.nlm.nih.gov/32116145/
    172. https://pubmed.ncbi.nlm.nih.gov/29924135/
    173. https://link.springer.com/article/10.1007%2Fs13577-021-00593-1
    174. https://pubmed.ncbi.nlm.nih.gov/33914321/
    175. https://pubmed.ncbi.nlm.nih.gov/32050935/
    176. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160584/
    177. https://pubmed.ncbi.nlm.nih.gov/20092643/
    178. https://pubmed.ncbi.nlm.nih.gov/29463151/
    179. https://link.springer.com/article/10.1007/s43032-021-00664-6
    180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016779/
    181. https://pubmed.ncbi.nlm.nih.gov/33876670/
    182. https://pubmed.ncbi.nlm.nih.gov/31801409/
    183. https://pubmed.ncbi.nlm.nih.gov/32984346/
    184. https://pubmed.ncbi.nlm.nih.gov/34496349/
    185. https://pubmed.ncbi.nlm.nih.gov/34469786/
    186. https://pubmed.ncbi.nlm.nih.gov/29501742/
    187. https://www.researchgate.net/publication/314429110
    188. https://pubmed.ncbi.nlm.nih.gov/21098976/
    189. https://pubs.acs.org/doi/10.1021/acschemneuro.1c00063
    190. https://pubmed.ncbi.nlm.nih.gov/30835997/
    191. https://pubmed.ncbi.nlm.nih.gov/33805312/
    192. https://pubmed.ncbi.nlm.nih.gov/23817550/
    193. https://pubmed.ncbi.nlm.nih.gov/26354923/
    194. https://pubmed.ncbi.nlm.nih.gov/33926120/
    195. https://pubmed.ncbi.nlm.nih.gov/28282466/
    196. https://www.biorxiv.org/content/10.1101/623728v1
    197. https://pubmed.ncbi.nlm.nih.gov/23512716/
    198. https://pubmed.ncbi.nlm.nih.gov/20186806/
    199. https://pubmed.ncbi.nlm.nih.gov/30048615/
    200. https://pubmed.ncbi.nlm.nih.gov/28205605/
    201. https://pubmed.ncbi.nlm.nih.gov/27335407/
    202. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376469/
    203. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537566/
    204. https://pubmed.ncbi.nlm.nih.gov/21502950/
    205. https://www.nature.com/articles/mp20144
    206. https://pubmed.ncbi.nlm.nih.gov/33939949/
    207. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145299/
    208. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576176/
    209. https://pubmed.ncbi.nlm.nih.gov/33829413/
    210. https://pubmed.ncbi.nlm.nih.gov/32670741/
    211. https://pubmed.ncbi.nlm.nih.gov/33995105/
    212. https://pubmed.ncbi.nlm.nih.gov/34130310/
    213. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301379/
    214. https://pubmed.ncbi.nlm.nih.gov/28073764/
    215. https://pubmed.ncbi.nlm.nih.gov/24532085/
    216. https://pubmed.ncbi.nlm.nih.gov/31836807/
    217. https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkac062/6524254?rss=1#331394133

    Summary


    I’m sure you can agree that Zantrene is a very interesting molecule in a developing space. This review has not included the cardioprotection aspect of Zantrene, as that work is in its infancy, and deserves its own independent review. I am looking forward to the RAC team determining and developing the dose, dosing regimen, patient population, screening tool, and clinical data supporting FTO in humans, as it is currently in its infancy. At the very least, I hope that you found this information interesting.

    Last edited by Mason14: 01/06/22
 
watchlist Created with Sketch. Add RAC (ASX) to my watchlist
(20min delay)
Last
$1.31
Change
0.020(1.55%)
Mkt cap ! $217.2M
Open High Low Value Volume
$1.31 $1.31 $1.26 $71.25K 55.65K

Buyers (Bids)

No. Vol. Price($)
1 200 $1.27
 

Sellers (Offers)

Price($) Vol. No.
$1.31 5950 3
View Market Depth
Last trade - 16.10pm 26/04/2024 (20 minute delay) ?
Last
$1.31
  Change
0.020 ( 2.18 %)
Open High Low Volume
$1.30 $1.31 $1.26 10789
Last updated 15.59pm 26/04/2024 ?
RAC (ASX) Chart
arrow-down-2 Created with Sketch. arrow-down-2 Created with Sketch.