Buddhist believe in the importance of frequency and vibrations...

  1. 54,214 Posts.
    lightbulb Created with Sketch. 981
    Buddhist believe in the importance of frequency and vibrations of which gamma rays are just one element

    Which leads us to acoustic levitation.
    Praying won't cut the mustard - but chanting can certainly move it

    To understand how acoustic levitation works, you first need to know a little about gravity, air and sound. First, gravity is a force that causes objects to attract one another. The simplest way to understand gravity is through Isaac Newton's law of universal gravitation. This law states that every particle in the universe attracts every other particle. The more massive an object is, the more strongly it attracts other objects. The closer objects are, the more strongly they attract each other. An enormous object, like the Earth, easily attracts objects that are close to it, like apples hanging from trees. Scientists haven't decided exactly what causes this attraction, but they believe it exists everywhere in the universe.
    Second, air is a fluid that behaves essentially the same way liquids do. Like liquids, air is made of microscopic particles that move in relation to one another. Air also moves like water does -- in fact, some aerodynamic tests take place underwater instead of in the air. The particles in gasses, like the ones that make up air, are simply farther apart and move faster than the particles in liquids.
    Third, sound is a vibration that travels through a medium, like a gas, a liquid or a solid object. A sound's source is an object that moves or changes shape very rapidly. For example, if you strike a bell, the bell vibrates in the air. As one side of the bell moves out, it pushes the air molecules next to it, increasing the pressure in that region of the air. This area of higher pressure is a compression. As the side of the bell moves back in, it pulls the molecules apart, creating a lower-pressure region called a rarefaction. The bell then repeats the process, creating a repeating series of compressions and rarefactions. Each repetition is one wavelength of the sound wave.
    The sound wave travels as the moving molecules push and pull the molecules around them. Each molecule moves the one next to it in turn. Without this movement of molecules, the sound could not travel, which is why there is no sound in a vacuum.
 
arrow-down-2 Created with Sketch. arrow-down-2 Created with Sketch.