MSB 2.23% $1.10 mesoblast limited

First lets look at Dr.Emerson Perin who is he and whats his...

  1. 5,344 Posts.
    lightbulb Created with Sketch. 956
    First lets  look  at  Dr.Emerson Perin  who  is  he  and  whats  his  expertise  ...............................
    Experience

    Medical Director, Cardiac Catheterization Lab

    CHI St. Luke's Health - Baylor St. Luke's Medical Center

    June 2015 – Present (1 year 5 months)BSLMC


    Clinical Professor of Medicine

    Baylor College of Medicine

    July 2013 – Present (3 years 4 months)Department of Cardiology
    Texas Heart Institute

    Director of Research in CV Medicine

    2008 – Present (8 years)


    Director Stem Cell Center, THI

    Texas Heart Institute

    1998 – Present (18 years)......................................................................................................................................................................................................
    . Leader and developer of Left Ventricular Mapping and Injection Techinique.
    - Founder of Stem Cell Center at Texas Heart Institute and first to treat heart failure patients with stem cell therapy (Brazil 2000).
    - Medical Director of stem cell center at Texas Heart Institute with focus on performing novel preclinical translational research and clinical research in stem cell therapy for cardiovascular disease.
    - Interventional cardiologist performing cutting edge procedures in complex coronary artery disease.

    Specialties: Internal Medicine
    Cardiology
    Interventional Cardiology
    Cardiovascular Stem Cell therapy..... Currently co principle investigation person on   the  Mesoblast CHF stage 111 trials ...........On  the  14/6 / 2016..he  was quoted saying  this  ........................................................................................................Dr. Emerson Perin, Director of Clinical Research for Cardiovascular Medicine and Medical Director Stem Cell Center, Texas Heart Institute, and a co-Principal Investigator on the Phase 3 heart failure trial, said “The trial has progressed extremely well and has been given a green light for continued enrolment by the Data Monitoring Committee." I have a deep sense that this is extremely important and meaningful work and have dedicated my career towards it.” ............................................................................  In  my  and  many  others  opinion this  person  is  THE world  leader  In CHF and Stem Cell  therapy ...............The following  snippet is  only  days  old  ...



      
    Patient advocacy groups have been strong supporters of stem cell and regenerative medicine research. But,after waiting more than a decade for scientists to complete clinical trials, many patients are now approaching clinics around the world that offer experimental stem cell-based interventions. Dialogue will highlight options for better cooperation and collaboration with the FDA to expedite proven therapies. Vivian Ho, Ph.D. (Moderator), Joyce L. Frey-Vasconcells, Ph.D., Kirstin R.W. Matthews, Ph.D., Ana S. Iltis, Ph.D. and James T. Willerson, M.D...........................................This  was  published in  sept. this  year  ................................
    Inside Doris Taylor's lab at the Texas Heart Institute are ethereal white pig hearts, stripped of their cells and now a blank slate of an organ.
    Removing cells from an organ is fairly simple for scientists like Taylor. Rebuilding the organ by injecting stem cells is the tricky part.
    But that's exactly what Taylor hopes to do: grow a human heart by injecting human stem cells into a "decellularized" organ.

    "It's very cool, the stuff we're doing," Taylor told the Houston Chronicle
    While Houston is internationally known for being at the apex of cancer treatment, the city is also quickly establishing itself as a leader in regenerative medicine.
    At its core, the regenerative medicine is focused on finding new ways to help the body repair itself, often through the use of stem cells.
    For example, scientists at Houston Methodist are hoping to someday restore hand function to paralyzed patients by using stem cells to help repair the spinal cord. Baylor College of Medicine is invested in research that might prevent cerebral palsy by coaxing cells into the brain to produce myelin, which foster communication between nerve cells. Children with brain injuries are benefitting from stem cell research at UT Health Science Center at Houston Medical School.
    More Information

    ReGENERATeKey developments in stem cell research and regenerative medicine
    1961:
    Canadian scientists James Till and
    Ernest McCulloch confirm the existence of stem cells.
    2000:
    James T. Willerson and Emerson Perin of the Texas Heart Institute receive permission to treat advanced heart- failure patients in Brazil with stem cells taken from their own bone marrow.
    2004:
    Willerson and Perin get permission from the FDA to treat patients in the U.S.
    2005:
    Baylor College of Medicine opens the Stem Cell and Regenerative Medicine Center.
    2006:
    Shinya Yamanaka of Japan discovers that mature cells can be converted into stem cells.
    At the Texas Heart Institute, a dream team of scientists that includes Taylor are studying various ways to compel damaged hearts to self-repair, including zeroing in on the best stem cells to use for treatment.
    "Our goal in research at the Texas Heart Institute is ultimately to prevent cardiovascular disease, and along those lines make it tolerable for people to relieve symptoms, their pain and help improve their overall lifestyle," saidJames T. Willerson, the Institute's president. "And this is the important piece of it. I think it's one of the most important things we do.
    The use of stem cells in medicine has evolved rapidly since a pair of Canadian scientists first confirmed the existence of stem cells in 1961.
    Stem cells are found both in early stage embryos and in adults, in the blood marrow and elsewhere. They are of particular interest to scientists because of their ability to easily divide and develop into various types of cells, sometimes repairing damaged cells.
    Because of their potential to repair damaged organs, Willerson got interested in stem cells in the 1990's and began working with them in animal research.
    In 2000, that research took a monumental leap when he and a Brazilian colleague, Emerson C. Perin, got approval to perform the first ever injection of human stem cells into 14 patients suffering from advanced heart failure in Rio de Janeiro.
    Using a specialized catheter, Willerson and Perin injected stem cells taken from the patient's bone marrow and injected them into 15 sites in the heart.
    Within a year, the results were nothing short of amazing.
    "Some that couldn't walk from here to the door were now jogging on the beach in Rio, not very fast, but quite an improvement," Willerson said.
    That study was the first of its kind in the world and in 2004 Willerson and Perin asked the Food and Drug Administrationfor permission to replicate it in the U.S.
    After much scrutiny, permission was granted and 20 patients in various throes of heart failure were injected with their own stem cells.
    That study taught them not all stem cells were created equal. Stem cells that come from people under the age of 60 tend to perform better.
    Perin, who is now the medical director of the Institute's Stem Cell Center, has focused his research on a more specialized type of stem cells known as mysenchymal cells.
    In a 2015, he was the lead author on a study that found injecting 150 million precursor mysenchymal cells into patients with severe heart failure prevented future heart attacks, death, and worsening heart failure.
    "That's almost unheard of," Willerson said. "And this was a very sick group of people."
    Working with stem cells is not without controversy, particularly if that means using embryonic stem cells.
    In 2006, a Japanese researcher found a way to reprogram adult stem cells to behave like embryonic stem cells. These cells known as induced pluripotent stem cells (iPSC) became a game changer by removing some of the moral objections over research with fetal tissue.
    The technology to create iPSC's combined with a brand new genome editing tool known as CRISPR-Cas9 are giving scientists a new way to detect genetic mutations and possibly fix flaws that in the past caused debilitating diseases.
    "I would say the sky is the limit," said Ben Deneen, an associate professor at Baylor College of Medicine's Stem Cells and Regenerative Medicine Center.
    Deneen's research is focused on coaxing cells in the brain to make myelin, which is often damaged when an infant suffers a loss of oxygen to the brain. When that happens, cerebral palsy or multiple sclerosis occurs.
    It's just one example of a regenerative medicine that doesn't involve injecting stem cells directly into a damaged organ...................James  Willerson  is  the  president of  Texas Heart Institute ...... V

 
watchlist Created with Sketch. Add MSB (ASX) to my watchlist
(20min delay)
Last
$1.10
Change
-0.025(2.23%)
Mkt cap ! $1.250B
Open High Low Value Volume
$1.13 $1.16 $1.04 $14.57M 13.49M

Buyers (Bids)

No. Vol. Price($)
4 21024 $1.09
 

Sellers (Offers)

Price($) Vol. No.
$1.10 241 1
View Market Depth
Last trade - 16.10pm 09/07/2024 (20 minute delay) ?
MSB (ASX) Chart
arrow-down-2 Created with Sketch. arrow-down-2 Created with Sketch.